

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 2

Durée: 4 heures

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites.

Le sujet est composé de deux exercices et d'un problème tous indépendants.

EXERCICE 1

Pour n entier, $n \ge 2$, on définit le déterminant de Vandermonde de n nombres complexes $x_1, x_2, ..., x_n$ par :

$$V(x_{1},x_{2},...,x_{n}) = \begin{vmatrix} 1 & 1 & ... & 1 \\ x_{1} & x_{2} & ... & x_{n} \\ x_{1}^{2} & x_{2}^{2} & ... & x_{n}^{2} \\ . & . & . & . \\ . & . & . & . \\ x_{1}^{n-1} & x_{2}^{n-1} & ... & x_{n}^{n-1} \end{vmatrix}$$

L'objet de cet exercice est de démontrer par récurrence que l'on a : $V(x_1, x_2, ..., x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$.

- Q1. Calculer $V(x_1,x_2)$. Expliquer pourquoi il suffit de faire la démonstration pour n nombres complexes $x_1,x_2,...,x_n$ deux à deux distincts.
 - Dans la suite, $x_1, x_2, ..., x_n$ sont n nombres complexes deux à deux distincts.
- Q2. On considère la fonction t → P(t) = V(x₁, x₂,...,x_{n-1},t).
 Démontrer que P est une fonction polynomiale de degré au plus n-1 et justifier que le coefficient de tⁿ⁻¹ est un déterminant de Vandermonde.

Démontrer par récurrence que
$$V(x_1, x_2, ..., x_n) = \prod_{1 \le i \le n} (x_j - x_i)$$
.

Q3. Première application

Calculer le déterminant de la matrice $A=(i^j)_{1\leq i\leq n}$ en faisant apparaître le déterminant de $1\leq j\leq n$

Vandermonde V(1, 2, ..., n).

Q4. Deuxième application

Donner un exemple de n nombres complexes $a_1, a_2, ..., a_n$ deux à deux distincts et tous non

nuls, tels que
$$\sum_{k=1}^n a_k^2 = 0$$
.

Soit n nombre complexes $x_1, x_2, ..., x_n$ deux à deux distincts et tous non nuls, démontrer que

I'une au moins des sommes
$$\sum_{k=1}^{n} x_k \cdot \sum_{k=1}^{n} x_k^2 \cdot \sum_{k=1}^{n} x_k^3 \cdot \dots \cdot \sum_{k=1}^{n} x_k^n$$
 est non nulle.

On pourra utiliser un déterminant de Vandermonde non nul.

EXERCICE 2

Dans cet exercice, $\| \|$ désigne une norme d'algèbre sur $M_n(\mathbb{R})$, c'est-à-dire une norme vérifiant, pour tout couple (A,B) de matrices de $M_n(\mathbb{R})$, $\|A.B\| \le \|A\| \cdot \|B\|$.

- **Q5.** Démontrer que pour toute matrice A de $M_n(\mathbb{R})$, la série $\sum_{k\geq 0} \frac{1}{k!} A^k$ converge. On notera e^A sa somme.
- **Q6.** Démontrer que l'application $A \mapsto e^A$ est continue sur $M_n(\mathbb{R})$.
- Q7. Si $H \in M_n(\mathbb{R})$ est une matrice non nulle de la boule de centre 0 et de rayon r > 0, déterminer la limite de $\frac{1}{\|H\|} \sum_{k=2}^{+\infty} \frac{1}{k!} H^k$ lorsque H tend vers 0.

En déduire que l'application $A \mapsto e^A$ est différentiable en la matrice 0. On précisera sa différentielle en 0.

PROBLÈME

Pour toute matrice A de $M_n(\mathbb{R})$, on note $e^A = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$.

Dans ce problème, on note S_n l'espace vectoriel des matrices de $M_n(\mathbb{R})$ symétriques.

On dit que la matrice $A \in S_n$ est symétrique positive lorsque toutes ses valeurs propres sont positives ou nulles.

On note S_n^+ l'ensemble des matrices symétriques positives.

Partie I - Exponentielle d'une matrice symétrique

Pour a et b deux réels, on note :

$$A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} \text{ et } J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- **Q8.** Démontrer, en détaillant les calculs, que $A \in S_3^+$, si et seulement si, $(a + 2b \ge 0 \text{ et } a \ge b)$.
- Q9. Calculer J^k pour tout entier k non nul. Cette relation est-elle valable pour k=0? En utilisant la relation $A=(a-b)l_3+bJ$, calculer et expliciter e^A . On pourra utiliser sans démonstration que, si deux matrices A et B de $M_n(\mathbb{R})$ commutent, alors $e^{A+B}=e^Ae^B$. Vérifier que $e^A\in S_3^+$.
- **Q10.** Soit *P* une matrice inversible de $M_n(\mathbb{R})$.

Justifier que l'application $M \mapsto PMP^{-1}$ est continue sur $M_n(\mathbb{R})$.

Si $A \in S_n$ est semblable à une matrice diagonale D, déterminer une matrice diagonale semblable à la matrice e^A .

En déduire que $e^A \in S_n^+$.

Partie II - Produit de Hadamard de deux matrices

Dans cette partie, pour une matrice $A = (a_{i,j})$ de $M_n(\mathbb{R})$, on note E(A) la matrice de $M_n(\mathbb{R})$, de terme général $e^{a_{i,j}} : E(A) = \left(e^{a_{i,j}}\right)$.

Nous allons démontrer que si $A \in S_n^+$, alors $E(A) \in S_n^+$.

On définit le produit de Hadamard de deux matrices $A=(a_{i,j})$ et $B=(b_{i,j})$ de $M_n(\mathbb{R})$ noté * par : $A*B=(a_{i,j}b_{i,j})\in M_n(\mathbb{R}).$

On note le produit usuel de deux matrices A et B par AB.

On confond une matrice de $M_{1,1}(\mathbb{R})$ avec son terme réel.

- Q11. Vérifier que, lorsque la matrice $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} \in S_3^+$, la matrice $E(A) \in S_3^+$.
- Q12. Si D est une matrice diagonale dont tous les termes sont positifs ou nuls et si Y est matrice de $M_{n,1}(\mathbb{R})$, quel est le signe de 'YDY ? En déduire qu'une matrice A de S_n appartient à S_n^+ si, et seulement si, pour toute matrice $X \in M_{n,1}(\mathbb{R})$ on a 'XAX ≥ 0 .
- Q13. Si A et B sont deux matrices de S_n^+ et α , β deux réels positifs, démontrer, en utilisant la question Q12, que $\alpha A + \beta B$ est une matrice de S_n^+ . Si A et B sont deux matrices de S_n^+ a-t-on nécessairement $AB \in S_n^+$?
- **Q14.** Si $A \in S_n^+$, démontrer qu'il existe une matrice $R \in S_n^+$ telle que $A = R^2$.
- Q15. Si A et B sont deux matrices de S_n^+ , si on pose $A = U^2$ et $B = V^2$ avec $U = (u_{i,j}) \in S_n^+$, $V = (v_{i,j}) \in S_n^+$ et si $A * B = (c_{i,j})$, vérifier que, pour tout couple $(i,j) \in [1,n]^2$, $c_{i,j} = \left(\sum_{i=1}^n u_{k,i} u_{k,j} \right) \left(\sum_{i=1}^n v_{i,i} v_{i,j}\right).$

En déduire que, si A et B sont deux matrices de S_n^+ , on a $A*B \in S_n^+$.

- **Q16.** Pour toute matrice A de $M_n(\mathbb{R})$ et pour tout entier naturel $p \ge 2$, on note A^{*p} la matrice A * A * ... * A (p fois). On note $A^{*0} = (1)$ la matrice dont tous les termes sont égaux à 1 et $A^{*1} = A$. Soit une matrice A de $M_n(\mathbb{R})$, déterminer la limite de la suite de matrices (T_N) définie pour tout entier naturel N non nul par $T_N = \sum_{n=0}^{N} \frac{1}{n!} A^{*n}$.
- Q17. Pour $X \in M_{n,1}(\mathbb{R})$, justifier que l'application $M \mapsto {}^t XMX$ est continue sur $M_n(\mathbb{R})$, puis démontrer que S_n^+ est une partie fermée de S_n . En déduire que si $A \in S_n^+$ alors $E(A) \in S_n^+$.

FIN