Le sujet comprend 13 pages, numérotées de 1 à 13.

Début de l'épreuve

Points rationnels de la quadrique

$$3x^2 + 3y^2 - z^2 = -1$$

Le problème comporte 8 parties. La partie 1 n'est utilisée que dans la partie 8. Les parties 2 à 6 sont interdépendantes. La partie 7 est indépendante des précédentes. La partie 8 utilise les résultats de toutes les autres parties.

Notations et définitions

L'objet de ce problème est l'étude des solutions entières et rationnelles de l'équation

$$3x^2 + 3y^2 - z^2 = -1. ag{1}$$

• On note V l'espace des vecteurs colonnes $M_{3,1}(\mathbb{R})$, canoniquement isomorphe à \mathbb{R}^3 . Étant donné un vecteur v de V, on note x_v , y_v et z_v ses coordonnées dans la base canonique, de sorte que

$$v = \begin{pmatrix} x_v \\ y_v \\ z_v \end{pmatrix}$$

 $\bullet\,$ On munit V de la forme bilinéaire symétrique

$$B: \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \right) \mapsto 3xx' + 3yy' - zz'$$

Notons que B n'est pas définie positive.

L'équation (1) se réécrit :
$$B\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = -1.$$

• On note H l'ensemble

$$\mathcal{H} = \{ v \in V \mid B(v, v) = -1 \text{ et } z_v > 0 \}.$$

• On note v_0 le vecteur $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. On remarquera que $v_0 \in \mathcal{H}$ et que pour tout $v \in V$, on a

$$B(v,v_0)=-z_v.$$

cpge-paradise.com

- On note V_ℤ l'ensemble des vecteurs de V à coordonnées entières. Un vecteur entier est appelé primitif si ses coordonnées n'ont pas de diviseur commun autre que 1 et −1.
- On note $V_{\mathbb{Q}}$ l'ensemble des vecteurs de V à coordonnées rationnelles. Étant donné un vecteur $v \in V_{\mathbb{Q}}$, on appelle hauteur de v, et on note $\operatorname{ht}(v)$, le plus petit dénominateur commun à x_v , y_v et z_v , c'est-à-dire le plus petit entier $k \geq 1$ tel que $kv \in V_{\mathbb{Z}}$.
- Pour tout entier $k \ge 1$, on définit

$$P_k = \{ v \in \mathcal{H} \cap V_{\mathbb{Q}} \text{ tels que } kv \in V_{\mathbb{Z}} \}$$

et pour tout $h \in \mathbb{R}_+^*$, on pose

$$P_{\leq h} = \bigcup_{k \leq h} P_k = \{ v \in \mathcal{H} \cap V_{\mathbb{Q}} \text{ tels que } \operatorname{ht}(v) \leq h \} .$$

- Le cardinal d'un ensemble fini A est noté |A|.
- Étant donné un nombre réel x, on note [x] le plus grand entier inférieur ou égal à x et [x] le plus petit entier supérieur ou égal à x.

Partie 1: Un critère d'équidistribution

· Les résultats de cette partie ne seront utilisés que dans la partie 8.

1.1. Soit a un réel de l'intervalle ouvert]0,1[. Montrer qu'il existe $\lambda>0$ tel que le polynôme $P(x)=x-\lambda x(x-a)(x-1)$

 $I(x) = x - \lambda x(x - a)(x$

vérifie les deux propriétés suivantes :

- 1. P([0,1]) = [0,1],
- 2. P est croissant sur [0,1].

On fixe un tel choix de λ et on note P_a le polynôme $x - \lambda x(x-a)(x-1)$. Soit $(P_a^{\circ n})_{n\geq 0}$ la suite de polynômes définie par récurrence par

- $P_a^{\circ 0}(x) = x$,
- $P_a^{\circ n+1}(x) = P_a(P_a^{\circ n}(x)).$
- 1.2. Montrer que $P_a^{\circ n}$ converge uniformément vers 1 sur tout compact de]a,1] et uniformément vers 0 sur tout compact de [0,a[.

On note $\mathcal{C}([-1,1])$ l'espace vectoriel des fonctions continues de [-1,1] dans \mathbb{C} et $\mathcal{T}([-1,1])$ le sous-espace vectoriel complexe de $\mathcal{C}([-1,1])$ engendré par les fonctions

$$e_k: t \mapsto e^{i\pi kt}$$
, $k \in \mathbb{Z}$.

- 1.3. Montrer que $\mathcal{T}([0,1])$ est une sous-algèbre de $\mathcal{C}([-1,1])$ pour la loi de multiplication usuelle des fonctions.
- 1.4. Soit $b \in \mathbb{R}$ tel que $\cos(b) \in]0,1[$. Montrer que la suite de fonctions $(f_{b,n})_{n \in \mathbb{N}}$ définie par

$$f_{b,n}(t) = P_{\cos(b)}^{\circ n} \left(\cos^2\left(\frac{\pi}{2}t\right)\right)$$

converge uniformément vers 1 sur tout compact de] $-\cos(b)$, $\cos(b)$ [et converge uniformément vers 0 sur tout compact de $[-1, -\cos(b)] \cup]\cos(b)$, 1].

On note $\mathcal{C}([-1,1]^2)$ l'espace des fonctions continues de $[-1,1]^2$ dans \mathbb{C} et $\mathcal{T}([-1,1]^2)$ le sous-espace engendré par les fonctions

$$e_{u,v}:(s,t)\mapsto e^{i\pi us}e^{i\pi vt}$$
, $(u,v)\in\mathbb{Z}^2$.

- **1.5.** Soient $a,b,c,d \in [-1,1]$ tels que a < b et c < d. Montrer que pour tout $\varepsilon < \min(\frac{b-a}{2},\frac{d-c}{2})$, il existe $f_{\varepsilon} \in \mathcal{T}([-1,1] \times [-1,1])$ vérifiant les propriétés suivantes :
 - 1. $f_{\varepsilon}(s,t) \in [0,1]$ pour tout $(s,t) \in [-1,1]^2$,
 - 2. $f_{\varepsilon}(s,t) \leq \varepsilon$ pour $(s,t) \notin [a,b] \times [c,d]$,
 - 3. $f_{\varepsilon}(s,t) \ge 1 \varepsilon$ pour $(s,t) \in [a + \varepsilon, b \varepsilon] \times [c + \varepsilon, d \varepsilon]$.

Soit $(E_n)_{n\in\mathbb{N}}$ une suite de parties finies de $[-1,1]^2$ telle que, pour tout $(u,v)\neq(0,0)$,

$$\frac{1}{|E_n|} \sum_{(s,t) \in E_n} e_{u,v}(s,t) \xrightarrow[n \to +\infty]{} 0.$$

1.6. Montrer que pour tout $f \in \mathcal{T}$,

$$\frac{1}{|E_n|} \sum_{(s,t) \in E_n} f(s,t) \xrightarrow[n \to +\infty]{} \frac{1}{4} \int_{-1}^1 \int_{-1}^1 f(s,t) \, \mathrm{d}s \, \mathrm{d}t .$$

1.7. Montrer que pour tous $a, b, c, d \in [-1, 1]$ tels que a < b et c < d,

$$\frac{|E_n \cap ([a,b] \times [c,d])|}{|E_n|} \xrightarrow[n \to +\infty]{} \frac{|b-a| |d-c|}{4}.$$

On dit d'une telle suite E_n qu'elle s'équidistribue dans $[-1,1] \times [-1,1]$.

Partie 2 : Pseudo-orthogonalité

Rappelons que la forme bilinéaire B définie en préambule n'est pas définie positive. Étant donné un vecteur $v \in V$, on appelle pseudo-orthogonal de v et on note v^{\perp} l'ensemble des vecteurs w tels que B(v,w)=0.

- **2.1.** Soit v un vecteur non-nul de V. Montrer que v^{\perp} est un sous-espace vectoriel de V de codimension 1, et que v^{\perp} est un supplémentaire de la droite engendrée par v si et seulement si $B(v,v) \neq 0$.
- 2.2. Soient v_1 et v_2 deux vecteurs de \mathcal{H} . Montrer que

$$B(v_1, v_2) \le -1 ,$$

avec égalité si et seulement si $v_1 = v_2$.

2.3. En déduire que si $v \in \mathcal{H}$, alors la restriction de B à v^{\perp} est un produit scalaire.

Partie 3: Symétries réelles

On identifie $M_3(\mathbb{R})$ avec les endomorphismes linéaires de V. Soit G l'ensemble des endomorphismes g tels que

$$B(gu, gv) = B(u, v)$$

pour tous $u, v \in V$.

- ${\bf 3.1.}$ Montrer que G est un groupe pour la composition des applications linéaires.
- **3.2.** Montrer que, pour tout $g \in G$, on a $g(\mathcal{H}) = \mathcal{H}$ ou $-g(\mathcal{H}) = \mathcal{H}$.

On notera G_0 le sous-groupe de G formé des éléments g tels que $g(\mathcal{H}) = \mathcal{H}$. Pour tout $w \in V$ tel que B(w, w) > 0, on définit l'application linéaire

$$s_w: v \mapsto v - 2\frac{B(v,w)}{B(w,w)}w$$
.

- 3.3. Montrer que $s_w^2 = \mathrm{Id}_V$, et déterminer les valeurs propres et espaces propres de s_w .
- **3.4.** Montrer que $s_w \in G_0$.
- **3.5.** Montrer que pour tous $u, v \in \mathcal{H}$, il existe $w \in V$ tel que B(w, w) > 0 et $s_w(u) = v$.

Partie 4: Géométrie de \mathcal{H}

On note arcch : $[1, +\infty) \to \mathbb{R}_+$ la réciproque du cosinus hyperbolique, c'est-à-dire l'unique fonction telle que

$$\operatorname{arcch}(\operatorname{ch}(x)) = x$$

pour tout $x \in \mathbb{R}_+$. La fonction arcch est dérivable sur $]1, +\infty)$ et on a

$$\operatorname{arcch}'(x) = \frac{1}{\sqrt{x^2 - 1}}$$
.

4.1. Soit $v \in \mathcal{H}$. Montrer que l'ensemble $T_v\mathcal{H}$ des vecteurs tangents à \mathcal{H} au point v est un sous-espace vectoriel de V et déterminer ce sous-espace. En déduire que la restriction de B à $T_v\mathcal{H}$ est un produit scalaire.

Soit $\gamma:[a,b]\to\mathcal{H}$ une courbe paramétrée continue et \mathcal{C}^1 par morceaux (vue comme fonction à valeurs dans V). On définit la longueur hyperbolique de γ par

$$\ell(\gamma) = \int_a^b \sqrt{B(\gamma'(t), \gamma'(t))} \, \mathrm{d}t \ .$$

- **4.2.** Montrer que si $h:[c,d]\to [a,b]$ est un difféomorphisme, alors $\ell(\gamma)=\ell(\gamma\circ h)$.
- **4.3.** Posons $f(t) = -B(\gamma(a), \gamma(t))$ et $n(t) = \sqrt{B(\gamma'(t), \gamma'(t))}$. Montrer que

$$f'(t) \le \sqrt{f(t)^2 - 1} n(t) .$$

4.4. En déduire que

$$-B(\gamma(a), \gamma(b)) \le \operatorname{ch}(\ell(\gamma))$$
.

Soient u et v deux points de \mathcal{H} . On définit la distance hyperbolique entre u et v par

$$d(u,v) = \inf_{\gamma} \ell(\gamma)$$
,

où l'infimum est pris sur l'ensemble des chemins continus et \mathcal{C}^1 par morceaux $\gamma:[a,b]\to\mathcal{H}$ tels que $\gamma(a)=u$ et $\gamma(b)=v$.

- 4.5. Montrer que d est une distance sur \mathcal{H} , c'est-à-dire que
 - d(u,v) = d(v,u),
 - $d(u, w) \le d(u, v) + d(v, w)$ et
 - $d(u,v) = 0 \Leftrightarrow u = v$

pour tous $u, v, w \in \mathcal{H}$.

4.6. Montrer que d(gu, gv) = d(u, v) pour tout $g \in G$.

Pour tout $(t,\theta) \in \mathbb{R}_+ \times [0,2\pi]$, on définit

$$F(t,\theta) = \begin{pmatrix} \frac{1}{\sqrt{3}} \operatorname{sh}(t) \cos(\theta) \\ \frac{1}{\sqrt{3}} \operatorname{sh}(t) \sin(\theta) \\ \operatorname{ch}(t) \end{pmatrix}.$$

- **4.7.** Montrer que F est à valeurs dans \mathcal{H} et que $F: \mathbb{R}_+ \times [0, 2\pi] \to \mathcal{H}$ est surjective.
- **4.8.** Calculer, pour tout $\theta \in [0, 2\pi]$, la longueur hyperbolique du chemin

$$\gamma: [0,b] \to \mathcal{H}$$
 $t \mapsto F(t,\theta)$.

4.9. Montrer que pour tous $u, v \in \mathcal{H}$, on a

$$\operatorname{ch}(d(u,v)) = -B(u,v) .$$

Partie 5: Symétries entières

Rappelons que G_0 désigne le sous-groupe des endomorphismes de V préservant B et \mathcal{H} (cf Question 3.2). On considère maintenant Γ le sous-groupe de G_0 formé des éléments g tels que $g(V_{\mathbb{Z}}) = V_{\mathbb{Z}}$.

5.1. Montrer que pour tout $v, w \in \mathcal{H}$ et tout $R \geq 0$, l'ensemble

$$\{g \in \Gamma \text{ tels que } d(gv, w) \le R\}$$

est fini.

On considère les trois vecteurs

$$w_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 , $w_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $w_3 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$.

5.2. Vérifier que s_{w_1}, s_{w_2} et s_{w_3} appartiennent à Γ et calculer les matrices correspondantes.

On note T l'ensemble des vecteurs $v \in \mathcal{H}$ tels que $B(v, w_i) \geq 0$ pour tout $i \in \{1, 2, 3\}$.

5.3. Montrer que T est compact et contient v_0 .

Soit $S_{1,2}$ le sous-groupe de Γ engendré par s_{w_1} et s_{w_2} . Soit $v \in \mathcal{H}$.

5.4. Montrer qu'il existe $g \in S_{1,2}$ tel que

$$B(gv, w_1) \ge 0$$
 et $B(gv, w_2) \ge 0$.

- **5.5.** Montrer que si $B(v, w_3) < 0$, alors $d(v_0, s_{w_3}(v)) < d(v_0, v)$.
- **5.6.** Montrer que pour tout $v \in \mathcal{H}$, il existe $g \in \Gamma$ tel que $gv \in T$.

Partie 6: Points rationnels de hauteur bornée

Dans cette section, on fixe un entier $k \geq 1$.

6.1. Montrer que l'ensemble P_k défini en préambule est invariant par Γ .

Pour tout s>1, on note $P_k(s)$ le sous-ensemble de P_k formé des vecteurs v tels que $z_v\leq s$.

6.2. Montrer que $P_k(s)$ est fini.

Le but de cette partie est d'estimer la croissance du cardinal de $P_k(s)$ lorsque s tend vers $+\infty$.

6.3. Montrer qu'il existe une constante C > 0 telle que pour tout $v \in \mathcal{H}$,

$$|\{g \in \Gamma \text{ tels que } gv \in T\}| \le C$$
.

Pour tout $R \in \mathbb{R}$, on pose

$$\Gamma(R) = \{g \in \Gamma \text{ tels que } d(v_0, gv_0) \le R\}$$
.

Rappelons que $\Gamma(R)$ est un ensemble fini d'après la question 5.1. Enfin, posons $D = \sup_{v \in T} d(v_0, v)$.

6.4. Montrer que, pour tout $s \ge 0$,

$$\frac{1}{C}|\Gamma(\operatorname{arcch}(s) - D)| \cdot |P_k \cap T| \le |P_k(s)| \le |\Gamma(\operatorname{arcch}(s) + D)| \cdot |P_k \cap T|.$$

Soit $F:[0,2\pi]\times\mathbb{R}_+\to\mathcal{H}$ l'application définie à la question 4.6.

6.5. Pour tout $(\theta, \alpha) \in [0, 2\pi] \times \mathbb{R}_+$ montrer que

$$d(F(t,\theta), F(t,\theta + \alpha e^{-t})) \underset{t \to +\infty}{\longrightarrow} \operatorname{arcch}\left(1 + \frac{\alpha^2}{8}\right)$$

et que la convergence est uniforme sur tout compact de $[0, 2\pi] \times \mathbb{R}_+$.

Pour tout $n \in \mathbb{N}$, on définit

$$\Delta(n) = \left\{ F\left(k \ln(2), \frac{2\pi l}{2^k}\right), k \in \{0, \dots, n\}, l \in \{1, \dots, 2^k\} \right\} .$$

6.6. Montrer qu'il existe r>0 vérifiant les deux propriétés suivantes :

- 1. pour tout $g \in \Gamma(n \ln(2))$, il existe $v \in \Delta(n)$ tel que $d(gv_0, v) \leq r$,
- 2. pour tout $v \in \Delta(n)$, il existe $g \in \Gamma(n \ln(2))$ tel que $d(gv_0, v) \leq r$.

Fixons un tel r.

6.7. Montrer qu'il existe une constante $A \geq 1$ vérifiant les deux propriétés suivantes :

1. pour tout $g \in \Gamma(n \ln(2))$,

$$|\{v \in \Delta(n) \text{ tels que } d(gv_0, v) \le r\}| \le A$$
,

2. pour tout $v \in \Delta(n)$,

$$|\{g \in \Gamma(n \ln(2)) \text{ tels que } d(gv_0, v) \le r\}| \le A.$$

6.8. Montrer l'existence de constantes $C_1 > C_2 > 0$ et $R_0 > 0$ telles que, pour tout $R \ge R_0$,

 $C_2 e^R \le |\Gamma(R)| \le C_1 e^R$.

6.9. En déduire l'existence de constantes $C_1' > C_2' > 0$ et $s_0 > 1$ telles que, pour tout $k \in \mathbb{N}^*$ et tout $s \geq s_0$,

$$C_2' s |P_k \cap T| \le |P_k(s)| \le C_1' s |P_k \cap T|$$
.

Partie 7: L'équation $a^2 + b^2 = 0 \mod d$

Cette partie est indépendante des précédentes.

Soit d un entier non nul. On rappelle que, si $d=kd',\,k,d'\in\mathbb{N}^*,$ on a un morphisme injectif de groupes abéliens

$$\begin{array}{ccc} \mathbb{Z}/d'\mathbb{Z} & \to & \mathbb{Z}/d\mathbb{Z} \\ a & \mapsto & ka \end{array}$$

et un morphisme surjectif d'anneaux

$$\mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/d'\mathbb{Z}$$
$$a \mapsto a \mod d'$$

On note S(d) l'ensemble des paires $(a,b) \in (\mathbb{Z}/d\mathbb{Z})^2$ qui satisfont

$$a^2 + b^2 = 0 .$$

On dira qu'une paire $(a,b) \in S(d)$ est primitive s'il n'existe pas de diviseur k de d et de paire $(a',b') \in S(\frac{d}{k})$ telle que (a,b) = (ka',kb'). On notera $S_{prim}(d) \subset S(d)$ le sous-ensemble des paires primitives. On fera attention au fait que la paire $(0,0) \in S(d)$ n'est primitive pour aucun $d \geq 2$ puisqu'elle s'écrit $(d \cdot 0, d \cdot 0)$ avec $(0,0) \in S(1)$.

Rappelons que l'application $n \mapsto e^{\frac{2i\pi}{d}n}$ définit un morphisme du groupe $\mathbb{Z}/d\mathbb{Z}$ vers le groupe des nombres complexes de module 1. Étant donnés deux entiers relatifs u et v, on définit

 $L(u, v, d) = \sum_{(a,b)\in S(d)} e^{\frac{2i\pi}{d}ua} e^{\frac{2i\pi}{d}vb} ,$

et

$$L_{prim}(u, v, d) = \sum_{(a,b) \in S_{prim}(d)} e^{\frac{2i\pi}{d}ua} e^{\frac{2i\pi}{d}vb}.$$

En particulier, on a L(0,0,d) = |S(d)| et $L_{prim}(0,0,d) = |S_{prim}(d)|$.

7.1. Soit u un entier. Montrer que la somme

$$\sum_{k \in \mathbb{Z}/d\mathbb{Z}} e^{\frac{2i\pi}{d}ku}$$

vaut $d ext{ si } u \equiv 0 \mod d \text{ et } 0 \text{ sinon.}$

7.2. Soit n un entier premier avec d. Montrer que l'application

$$(a,b) \mapsto (na,nb)$$

est une bijection de $S_{prim}(d)$ dans $S_{prim}(d)$.

Soient d_1 et d_2 deux entiers premiers entre eux et m et n deux entiers tels que $md_1 + nd_2 = 1$.

7.3. Montrer que l'application

$$\varphi: ((a_1, b_1), (a_2, b_2)) \mapsto (nd_2a_1 + md_1a_2, nd_2b_1 + md_1b_2)$$

est une bijection de $S_{prim}(d_1) \times S_{prim}(d_2)$ dans $S_{prim}(d_1d_2)$.

7.4. Montrer que pour tous $(u, v) \in \mathbb{Z}^2$,

$$L_{prim}(u, v, d_1d_2) = L_{prim}(u, v, d_1) L_{prim}(u, v, d_2)$$
.

Soit p un nombre premier et $\alpha \geq 1$ un entier.

7.5. Montrer que

$$L_{prim}(u, v, p^{\alpha}) = L(u, v, p^{\alpha}) - L(u, v, p^{\alpha-1}).$$

7.6. Montrer qu'il existe $h \in \mathbb{Z}/p\mathbb{Z}$ tel que $h^2 = -1$ si et seulement si p = 2 ou $p \equiv 1 \mod 4$.

On suppose que p est congru à 1 modulo 4.

7.7. Montrer que $(a,b) \in S(p)$ si et seulement si

$$b = ha$$
 ou $b = -ha$,

où h est une solution de $h^2 = -1 \mod p$.

7.8. Soit $\alpha \geq 1$. Montrer qu'il existe $j \in \mathbb{Z}/p^{\alpha}\mathbb{Z}$ tel que $j^2 = -1$.

On fixe un tel j.

7.9. Soit $a \in \mathbb{Z}/p^{\alpha}\mathbb{Z}$ tel que p ne divise pas a. Montrer que $(a,b) \in S(p^{\alpha})$ si et seulement si

$$b = ja$$
 ou $b = -ja$.

7.10. Soit $a \in \mathbb{Z}/p^{\alpha}\mathbb{Z}$ et $k \leq \alpha$ le plus grand entier tel que p^k divise a. Montrer que si $k < \frac{\alpha}{2}$, alors $(a, b) \in S(p^{\alpha})$ si et seulement si

$$b \equiv \pm ja \mod p^{\alpha-k}$$

et que si $k \geq \frac{\alpha}{2}$, alors $(a,b) \in S(p^{\alpha})$ si et seulement si $p^{\lceil \frac{\alpha}{2} \rceil}$ divise b.

7.11. Montrer que pour tout $k \geq 1$, on a

$$|S_{prim}(p^{2k})| \ge \frac{1}{2}p^{2k}$$
.

Soit $(u, v) \in \mathbb{Z}^2 \setminus (0, 0)$.

7.12. Soit $\alpha \geq 2$. Montrer que $L(u, v, p^{\alpha}) = 0$ dès que $p^{\alpha-1}$ ne divise pas $u^2 + v^2$. En déduire que si $\alpha \geq 3$, alors $L_{prim}(u, v, p^{\alpha}) = 0$ dès que $p^{\alpha-2}$ ne divise pas $u^2 + v^2$.

7.13. Montrer que si p ne divise pas $u^2 + v^2$, alors

$$|L_{prim}(u, v, p)| \le 2$$
 et $|L_{prim}(u, v, p^2)| \le 1$.

On admettra dans la suite que les résultats des questions 7.11, 7.12 et 7.13 sont valables aussi pour $p \equiv 3 \mod 4$, et que les résultats des questions 7.12 et 7.13 sont valables aussi pour p = 2.

Pour tout entier $d \geq 2$, on note $\mathcal{P}(d)$ l'ensemble des nombres premiers divisant d.

7.14. Montrer l'inégalité

$$d \ge |\mathcal{P}(d)|!$$

En déduire que

$$|\mathcal{P}(d)| = \underset{d \to +\infty}{o} (\log(d))$$
.

7.15. Soit d un entier impair. Montrer que

$$|S_{prim}(d^2)| \ge d^2 2^{-|\mathcal{P}(d)|}$$
.

En déduire que, pour tout $\varepsilon > 0$, on a

$$d^{2-\varepsilon} = \mathop{o}_{d \to +\infty}(S_{prim}(d^2)) \ .$$

7.16. Soit $(u, v) \neq (0, 0)$. Montrer l'existence d'une constante C (dépendant de (u, v)) telle que pour tout d > 0,

 $|L_{prim}(u, v, d)| \le C 2^{|\mathcal{P}(d)|}.$

En déduire que, pour tout $\varepsilon > 0$, on a

$$|L_{prim}(u, v, d)| = \underset{d \to +\infty}{o} (d^{\varepsilon})$$
.

Partie 8 : Comportement asymptotique de $P_{\leq h}$

Cette partie reprend les définitions, notations et résultats des parties précédentes. Le but est d'estimer le nombre de points de $\mathcal{H} \cap V_{\mathbb{Q}}$ de hauteur inférieure à h contenus dans une boule hyperbolique donnée lorsque h tend vers $+\infty$.

On note $\mathbb D$ le disque ouvert de centre (0,0) de rayon $\frac{1}{\sqrt{3}}$ dans le plan $\mathbb R^2$ muni de la norme euclidienne standard :

$$||(s,t)|| = \sqrt{s^2 + t^2}$$
.

Considérons l'application $\varphi: \mathbb{D} \to V$ définie par

$$\Psi(s,t) = \begin{pmatrix} \frac{2s}{1 - 3s^2 - 3t^2} \\ \frac{2t}{1 - 3s^2 - 3t^2} \\ \frac{1 + 3s^2 + 3t^2}{1 - 3s^2 - 3t^2} \end{pmatrix} .$$

- 8.1. Montrer que Ψ est un homéomorphisme de $\mathbb D$ dans $\mathcal H$ et déterminer l'homéomorphisme réciproque.
- 8.2. Montrer que Ψ induit une bijection de $\mathbb{D} \cap \mathbb{Q}^2$ dans $\mathcal{H} \cap V_{\mathbb{Q}}$.
- 8.3. Montrer que l'image réciproque de $P_{\leq h}$ par Ψ est l'ensemble des points $u\in\mathbb{D}\cap\mathbb{Q}^2$ qui s'écrivent

$$u = \left(\frac{a}{d}, \frac{b}{d}\right)$$

avec $a,b\in\mathbb{Z}$ et $d\in\mathbb{N}^*$ vérifiant les trois conditions suivantes :

- 1. $d \text{ divise } 3a^2 + 3b^2$,
- 2. $d 3a^2 3b^2$ est pair,
- 3. $d \le h (z_{\Psi(u)} + 1)$.

On note Q_d l'ensemble des paires $(\frac{a}{d}, \frac{b}{d}) \in \mathbb{Q}^2 \cap ([-1, 1[\times [-1, 1[) \text{ vérifiant }]]))$

- 1. $d \text{ divise } 3a^2 + 3b^2$,
- 2. $d 3a^2 3b^2$ est pair.

On note également Q_d^{prim} le sous-ensemble de Q_d formé des couples (x, y) qui n'appartiennent pas à $Q_{d'}$ où d' > 0 est un diviseur de d différent de d. Enfin, on note

$$Q_{\leq h} = \bigcup_{d \leq h} Q_d = \bigcup_{d \leq h} Q_d^{prim} .$$

8.4. Montrer que les ensembles Q_d^{prim} sont deux à deux disjoints.

8.5. Supposons que 2 divise d et que 3 ne divise pas d. Montrer que pour tout $(u, v) \in \mathbb{Z}^2$, on a

$$\sum_{(s,t)\in Q_d^{prim}} e_{u,v}(s,t) = 4L_{prim}(u,v,d) ,$$

où $e_{u,v}$ est la fonction définie à la question 1.4 et L_{prim} est définie au début de la partie 7.

On admettra les formules similaires suivantes :

si 6 divise d, alors

$$\sum_{(s,t)\in Q_d^{prim}} e_{u,v}(s,t) = 36 L_{prim}\left(u,v,\frac{d}{3}\right) ,$$

• si ni 2 ni 3 ne divisent d, alors

$$\sum_{(s,t)\in Q_d^{prim}} e_{u,v}(s,t) = ((-1)^u + (-1)^v) L_{prim}(u,v,d) ,$$

• si 2 ne divise pas d mais 3 divise d, alors

$$\sum_{(s,t)\in Q_d^{prim}} e_{u,v}(s,t) = 9((-1)^u + (-1)^v) L_{prim}\left(u,v,\frac{d}{3}\right) .$$

Pour tout $h \in \mathbb{R}_+$, on pose $A(h) = |Q_{\leq h}|$.

8.6. Montrer que

$$h^{\frac{3}{2}-\varepsilon} = \underset{h \to +\infty}{o}(A(h))$$

pour tout $\varepsilon > 0$.

8.7. En déduire que la suite $(Q_{\leq n})_{n\in\mathbb{N}}$. s'équidistribue dans $[-1,1]^2$ (au sens défini à la fin de la partie 1.)

Fixons $r \in \mathbb{R}_+^*$. Soit $v \in \mathcal{H}$. On note $b_r(v)$ la boule hyperbolique ouverte de centre v de rayon r, c'est-à-dire

$$b_r(v) = \{ v' \in \mathcal{H} \mid d(v, v') < r \} .$$

8.8. Montrer que l'image réciproque de $b_r(v)$ par Ψ est la boule ouverte euclidienne de centre

$$\left(\frac{x_v}{z_v + \operatorname{ch}(r)}, \frac{y_v}{z_v + \operatorname{ch}(r)}\right)$$

et de rayon

$$\frac{\operatorname{sh}(r)}{\sqrt{3}\left(z_v + \operatorname{ch}(r)\right)} \ .$$

8.9. Montrer qu'il existe deux constantes $C_2, C_1 > 0$ (dépendant de r) telles que, pour tout $v \in \mathcal{H}$ tel que $d(v, v_0) > r$, il existe $h_0 > 0$ tel que pour tout $h \geq h_0$,

$$C_1 \frac{A(h(1 + \operatorname{ch}(d(v_0, v) - r)))}{\operatorname{ch}^2(d(v_0, v))} \le |P_{\le h} \cap B(v, r)| \le C_2 \frac{A(h(1 + \operatorname{ch}(d(v_0, v) + r)))}{\operatorname{ch}^2(d(v_0, v))}.$$

8.10. Soit $v \in \mathcal{H}$ tel que $d(v, v_0) > r$ et $g \in \Gamma$. Montrer qu'il existe $h_0 > 0$ tel que, pour tout $h \geq h_0$, on a

$$\frac{A(h(1 + \operatorname{ch}(d(v_0, v) - r)))}{A(h(1 + \operatorname{ch}(d(v_0, gv) + r)))} \le \frac{C_2}{C_1} \left(\frac{\operatorname{ch}(d(v_0, v))}{\operatorname{ch}(d(v_0, gv))}\right)^2$$

et

$$\frac{A(h(1+\operatorname{ch}(d(v_0,v)+r)))}{A(h(1+\operatorname{ch}(d(v_0,gv)-r)))} \ge \frac{C_1}{C_2} \left(\frac{\operatorname{ch}(d(v_0,v))}{\operatorname{ch}(d(v_0,gv))}\right)^2.$$

8.11. Montrer que pour tout $\varepsilon > 0$, on a

$$A(h) = \underset{h \to +\infty}{o} (h^{2+\varepsilon})$$

et

$$h^{2-\varepsilon} = \underset{h \to +\infty}{o} (A(h)) .$$

8.12. Conclure que pour tout $\varepsilon > 0$, tout point $v \in \mathcal{H}$ et tout r > 0, il existe $h_0 > 0$ tel que pour tout $h \ge h_0$,

 $h^{2-\varepsilon} \le |P_{\le h} \cap b(v,r)| \le h^{2+\varepsilon}$.

* * *

Fin du sujet