CCP - Mathématiques 1 MP/MPI 2023

Pandou

25 avril 2023

1 Exercice 1 (MP)

1. On utilise la formule du produit matriciel $[AB]_{i,j} = \sum_{k=1}^{n} [A]_{i,k} [B]_{k,j}$.

2. Un graphe est non orienté si, et seulement si, sa matrice d'adjacence est symétrique.

3. En utilisant le résultat admis, la distance entre i vers j est le plus petit entier $p \ge 1$ tel que le coefficient (i,j) de A^p est non nul. L'hypothèse qu'un tel chemin existe permet au programme suivant de fini car la distance est bien définie.

```
def distance(A,i,j):
    p=1
    B=A
    while B[i][j]==0:
        B = produit(A,B)
        p=p+1
    return p
```

4. Revoir le SQL. Voici ce qu'on m'a proposé (à vérifier) :

```
SELECT id FROM CLIENTS WHERE ville = ''TOULOUSE''
```

5. Revoir le SQL. Voici ce qu'on m'a proposé (à vérifier) :

```
SELECT C.email FROM CLIENTS as C INNER JOIN PARTENAIRES as P on C.id = P.id_client WHERE P.partenaire='', SCEI''
```

1 Exercice 1 (MPI)

- 1. Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n}$ et $B = (b_{i,j})_{1 \leqslant i,j \leqslant n}$ deux matrices de $M_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$.
 - Si N(A) = 0, alors $\forall i \in \mathbb{N}$, $\sum_{j=1}^{n} |a_{i,j}| = 0$ qui est une somme de réels positifs, donc $\forall i, j \in \mathbb{N}$, $a_{i,j} = 0$, donc A = 0.
 - On a

$$N(\lambda A) = \max_{1 \le i \le n} \sum_{i=1}^{n} |\lambda a_{i,j}| = \max_{1 \le i \le n} |\lambda| \sum_{i=1}^{n} |a_{i,j}| = |\lambda| N(A)$$

• Soit $i \in [1, n]$, on a

$$\sum_{j=1}^{n} |a_{i,j} + b_{i,j}| \leqslant \sum_{j=1}^{n} |a_{i,j}| + \sum_{j=1}^{n} |b_{i,j}| \leqslant N(A) + N(B)$$

Et donc, en prenant le maximum sur les $i \in [1, n]$, on a alors $N(A + B) \leq N(A) + N(B)$ Ainsi, N est une norme sur $M_n(\mathbb{R})$.

2. Soit $X=(x_i)_{1\leqslant i\leqslant n}\in S$ et $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in M_n(\mathbb{R})$, alors, comme $|x_i|\leqslant 1$, on a, pour $i\in \llbracket 1,n\rrbracket$:

$$\begin{aligned} \left| [AX]_i \right| &= \left| \sum_{k=1}^n a_{i,k} x_k \right| \\ &\leqslant \sum_{k=1}^n |a_{i,k} x_k| \\ &\leqslant \sum_{k=1}^n |a_{i,k}| \\ &\leqslant N(A) \end{aligned}$$

Et on prend le maximum sur $i \in [1, n]$ et on trouve :

$$||AX||_{\infty} \leqslant N(A)$$

 $\{\|AX\|_{\infty}, X \in S\}$ est une partie non vide de \mathbb{R} qui est majorée par N(A), elle admet alors une borne supérieure.

3. Soit $X \in M_{n,1}(\mathbb{R})$ et $A \in M_n(\mathbb{R})$. Si X = 0, c'est immédiat. Sinon, $Y = \frac{X}{\|X\|_{\infty}} \in S$, alors on a par définition

$$\|AY\|_{\infty} = \frac{1}{\|X\|_{\infty}} \|AX\|_{\infty} \leqslant \|A\| \qquad \text{ce qui se réécrit} \qquad \|AX\|_{\infty} \leqslant \|A\| \|X\|_{\infty}$$

4. D'après la question 2., en prenant la borne supérieure sur les $X \in S$, on trouve déjà

$$\forall A \in M_n(\mathbb{R}), ||A|| \leq N(A)$$

Soit $i_0 \in [1, n]$ tel que $N(A) = \sum_{j=1}^n |a_{i_0,j}|$. On considère le vecteur $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ défini par :

$$x_j = \begin{cases} \frac{a_{i_0,j}}{\left|a_{i_0,j}\right|} & \text{si } a_{i_0,j} \neq 0\\ 0 & \text{sinon} \end{cases}$$

On suppose dans la suite que $A \neq 0$ (car pour A = 0, l'égalité est triviale) et donc, on a $x \in S$ et

$$||Ax||_{\infty} = \max_{1 \le i \le n} \left| \sum_{\substack{1 \le j \le n, a_{i_0, j} \ne 0}} a_{i_0, j} x_j \right|$$

$$= \max_{1 \le i \le n} \left| \sum_{\substack{1 \le j \le n, a_{i_0, j} \ne 0}} |a_{i_0, j}| \right|$$

$$= \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i_0, j}|$$

$$= N(A)$$

Comme $x \in S$, on en déduit que

$$||A|| \geqslant ||Ax||_{\infty} = N(A)$$

D'où l'égalité

$$|||A||| = N(A)$$

5. On a

$$|||A||| = N(A) = \max(2+0+1, 3+2+3, 5+0+1) = \max(3, 8, 6) = 8$$

2 Exercice 2

- 6. Soit $f: x \in \mathbb{R} \longmapsto x e^{-x}$ qui est une fonction continue strictement croissante comme somme de fonctions continues strictement croissantes. On a f(0) = -1 < 0 et $\lim_{x \to +\infty} f(x) = +\infty$, donc par le théorème des valeurs intermédiaires, il existe un unique réel x tel que f(x) = 0, ie une unique solution de $e^{-x} = x$. (On sait même que cette solution est > 0).
- 7. La fonction f est différentiable sur \mathbb{R}^2 par théorèmes généraux de régularité. On a

$$\frac{\partial f}{\partial x}(x,y) = 2x - 2y - e^{-x}$$
 et $\frac{\partial f}{\partial y}(x,y) = -2x + 4y$

Un point critique $(x_0, y_0) \in \mathbb{R}^2$ de f est un point tel que $\frac{\partial f}{\partial x}(x_0, y_0) = 0$ et $\frac{\partial f}{\partial y}(x_0, y_0) = 0$. On a :

$$\begin{cases}
\frac{\partial f}{\partial x}(x_0, y_0) &= 0 \\
\frac{\partial f}{\partial y}(x_0, y_0) &= 0
\end{cases}
\iff
\begin{cases}
2x_0 - 2y_0 - e^{-x_0} &= 0 \\
x_0 &= 2y_0
\end{cases}
\iff
\begin{cases}
e^{-x_0} &= x_0 \\
x_0 &= 2y_0
\end{cases}$$

La première ligne admet une unique solution qui donne un unique $x_0 \in \mathbb{R}$ et la deuxième ligne donne un unique $y_0 \in \mathbb{R}$.

Ainsi, f admet un unique point critique en un point $(x_0, y_0) \in \mathbb{R}^2$.

8. On calcule la matrice hessienne de f:

$$H_f(x,y) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{pmatrix} = \begin{pmatrix} 2 + e^{-x} & -2 \\ -2 & 4 \end{pmatrix}$$

Son déterminant est $4(2 + e^{-x}) - 4 = 4(1 + e^{-x}) > 0$, on en déduit donc que les deux valeurs propres de $H_f(x_0, y_0)$ sont de même signe et comme sa trace est $6 + e^{-x} > 0$, on en déduit que ces deux valeurs propres sont strictement positives.

On en déduit que f admet un extremum local en (x_0, y_0) , c'est un minimum.

3 Problème

3.1 Partie I - Calcul d'une intégrale à l'aide d'une série

- 9. La fonction $f: x \longmapsto \frac{x^{\alpha-1}}{1+x}$ est continue sur $]0, +\infty[$. On regarde :
 - Au voisinage de 0^+ , on a $\frac{x^{\alpha-1}}{1+x} \sim x^{\alpha-1}$ qui est intégrable car $\alpha \in]0,1[$, donc par comparaison, f est intégrable sur]0,1[.
 - Au voisinage de $+\infty$, on a $f(x) \sim x^{\alpha-2}$ qui est intégrable en $+\infty$ car $\alpha \in]0,1[$, donc par comparaison, f est intégrable sur $[1,+\infty[$.
- 10. Dans $J(\alpha)$, on fait le changement de variables $y = \frac{1}{x}$:

$$J(\alpha) = \int_0^1 \frac{y^{1-\alpha}}{1+\frac{1}{y}} \frac{\mathrm{d}y}{y^2}$$
$$= \int_0^1 \frac{y^{(1-\alpha)-1}}{1+y} \mathrm{d}y$$
$$= I(1-\alpha)$$

11. Soit $x \in]0,1[$, on calcule

$$\sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} (-1)^n x^{n+\alpha-1}$$

$$= x^{\alpha-1} \sum_{n=0}^{+\infty} (-x)^n$$

$$= \frac{x^{\alpha-1}}{1+x}$$

Si $\sum f_n$ convergeait uniformément sur]0,1[, alors (f_n) converge vers 0 uniformément. En effet, si on note $R_n = \sum_{k \geqslant n} f_k$, alors $f_n = R_n - R_{n+1}$, alors $||f_n||_{\infty} \leqslant ||R_n||_{\infty} + ||R_{n+1}||_{\infty} \longrightarrow 0$. Mais (f_n) ne converge pas uniformément vers 0, en effet $||f_n||_{\infty} = 1$ qui ne converge pas vers 0.

12. S_n est une fonction continue sur [0,1] qui converge simplement vers $x \longmapsto \frac{x^{\alpha-1}}{1+x}$ sur]0,1[. On a:

$$\forall x \in]0,1[,S_n(x) = x^{\alpha-1} \sum_{k=0}^n (-x)^k = x^{\alpha-1} \frac{1 - (-x)^{n+1}}{1+x}$$

de sorte qu'on a la domination :

$$\forall x \in]0,1[, |S_n(x)| \le 2$$

Et donc, par le théorème de convergence dominée, on a

$$\lim_{n \to +\infty} \int_0^1 S_n(x) dx = \int_0^1 \lim_{n \to +\infty} S_n(x) dx = I(\alpha)$$

On en déduit que

$$I(\alpha) = \lim_{n \to +\infty} \int_0^1 \sum_{k=0}^n (-1)^k x^{k+\alpha-1}$$
$$= \lim_{n \to +\infty} \sum_{k=0}^n \int_0^1 (-1)^k x^{k+\alpha-1} dx$$
$$= \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+\alpha}$$

4

13. On utilise le résultat la question 10. :

$$I(\alpha) + J(\alpha) = I(\alpha) + I(1 - \alpha)$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+\alpha} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1-\alpha}$$

$$= \frac{1}{\alpha} + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n+\alpha} - \sum_{n=1}^{+\infty} \frac{(-1)^n}{n-\alpha}$$

$$= \frac{1}{\alpha} + \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{n+\alpha} - \frac{1}{n-\alpha}\right)$$

$$= \frac{1}{\alpha} + \sum_{n=1}^{+\infty} (-1)^n \frac{2\alpha}{\alpha^2 - n^2}$$

Et d'autre part, par linéarité, on a

$$I(\alpha) + J(\alpha) = \int_0^{+\infty} \frac{x^{\alpha - 1}}{1 + x} dx = \frac{1}{\alpha} + 2\alpha \sum_{n=1}^{+\infty} \frac{(-1)^n}{\alpha^2 - n^2}$$

14. On utilise la formule admise pour x = 0 et on a $1 = \frac{\sin(\pi \alpha)}{\pi} \left(\frac{1}{\alpha} + \sum_{r=1}^{+\infty} (-1)^n \frac{2\alpha}{\alpha^2 - n^2} \right)$, d'où, par la question précédente,

$$\int_0^{+\infty} \frac{x^{\alpha - 1}}{1 + x} dx = \frac{\pi}{\sin(\alpha \pi)}$$

Complément: On propose une courte preuve de la relation admise. D'ailleurs qu'a priori la relation n'est vrai que sur $]-\pi,\pi[$. Celle-ci demande quelques connaissances en séries de Fourier. On considère la fonction $f: x \in]-\pi,\pi] \longmapsto \cos(\alpha x).$

$$\forall n \geqslant 1, a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(\alpha t) \cos(nt) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\cos\left((n - \alpha)t \right) + \cos\left((n + \alpha)t \right) \right) dt$$

$$= \frac{1}{2\pi} \left[\frac{\sin\left((n - \alpha)\pi \right)}{n - \alpha} + \frac{\sin\left((n + \alpha)\pi \right)}{n + \alpha} \right]$$

$$= \frac{(-1)^n}{\pi} 2\alpha \frac{\sin(\pi \alpha)}{\alpha^2 - n^2}$$

et,

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(\alpha t) dt = \frac{1}{\alpha \pi} \sin(\alpha \pi)$$

et on pose $S_N(x) = \sum_{n=0}^{N} a_n \cos(nx)$. De sorte que

$$S_N(x) = \frac{\sin(\pi\alpha)}{\pi\alpha} + \sum_{n=1}^N (-1)^n \frac{2\alpha \sin(\pi\alpha)}{\pi(\alpha^2 - n^2)} \cos(nx) = \frac{\sin(\pi\alpha)}{\pi} \left(\frac{1}{\alpha} + \sum_{n=1}^N (-1)^n \frac{2\alpha \cos(nx)}{\alpha^2 - n^2}\right)$$

Il est clair que $(S_N)_{N\geqslant 1}$ converge normalement vers une limite. On admettra que cette limite est f^1

3.2Lien avec la fonction Gamma

- 15. Fixons x>0, on pose $\varphi(t)=t^{x-1}e^{-t}$ pour $t\in]0,+\infty[$. On a :

 Au voisinage de $0^+:\varphi(t)\sim t^{x-1}$ qui est intégrable en 0 car x>0 et donc φ est intégrable par comparaison.

^{1.} Ce résultat est donné par le théorème de Dirichlet.

• Au voisinage de $+\infty$: par croissances comparées, on a $\varphi(t) = o\left(\frac{1}{t^2}\right)$ et donc par comparaison, φ est intégrable en $+\infty$.

Ainsi, φ est intégrable sur $]0, +\infty[$ et donc Γ est bien définie sur $]0, +\infty[$.

16. Pour $x \ge 0$, on a pour t > 0, $\left| \frac{t^{\alpha - 1}}{1 + t} e^{-xt} \right| \le \frac{t^{\alpha - 1}}{1 + t}$ qui est intégrable par la question 9.. Et donc, par comparaison, f_{α} est bien définie sur $[0, +\infty[$.

On note $\varphi(x,t) = \frac{t^{\alpha-1}}{t+1}e^{-xt}$ définie sur $[0,+\infty[\times]0,+\infty[$. Pour chaque $x\geqslant 0,t\longmapsto \varphi(x,t)$ est continue. De même, pour chaque $t>0,x\longmapsto \varphi(x,t)$ est continue. On a la domination suivante :

$$\forall x \geqslant 0, \forall t > 0, \left| \varphi(x, t) \right| \leqslant \frac{t^{\alpha - 1}}{1 + t}$$

qui est encore intégrable par la question 9., ainsi par le théorème de continuité des intégrales à paramètres, f_{α} est continue sur $[0, +\infty[$.

17. On reprend la notation φ précédente et on fixe $\varepsilon > 0$. Pour chaque t > 0, la fonction $x \longmapsto \varphi(x,t)$ est \mathcal{C}^1 sur $[\varepsilon, +\infty[$ et

$$\frac{\partial \varphi}{\partial x}(x,t) = -\frac{t^{\alpha}}{t+1}e^{-xt}$$

Pour chaque $x \geqslant \varepsilon$, la fonction $t \longmapsto \frac{\partial \varphi}{\partial x}(x,t)$ est continue sur $]0,+\infty[$. De plus, on a la domination :

$$\left| \frac{\partial \varphi}{\partial x}(x,t) \right| \leqslant e^{-\varepsilon t}$$

La fonction $t \mapsto e^{-\varepsilon t}$ est intégrable sur $]0,+\infty[$ et donc, par le théorème de dérivabilité des intégrales à paramètres, f_{α} est de classe \mathcal{C}^1 et :

$$f'_{\alpha}(x) = -\int_{0}^{+\infty} \frac{t^{\alpha}}{1+t} e^{-xt} dt$$

18. On reprend encore la notation φ de la question précédente. On a popur chaque t>0, $\lim_{x\to +\infty} \varphi(x,t)=0$. On utilise la même domination : $\left|\varphi(x,t)\right|\leqslant \frac{t^{\alpha-1}}{1+t}$ qui est intégrable. On en déduit par le théorème de convergence dominée que

$$\lim_{x \to +\infty} f_{\alpha}(x) = 0$$

19. Par le théorème de croissances comparées, on a $\frac{e^{-t}}{t^{\alpha}} = o\left(\frac{1}{t^2}\right)$, donc $t \longmapsto \frac{e^{-t}}{t^{\alpha}}$ est intégrable au voisinage de $+\infty$. En 0^+ , on a $\frac{e^{-t}}{t^{\alpha}} \sim \frac{1}{t^{\alpha}}$ qui est intégrable car $\alpha \in]0,1[$, donc par comparaison, on a $t \longmapsto \frac{e^{-t}}{t^{\alpha}}$ est intégrable sur $]0,+\infty[$. Ainsi, on a

$$\lim_{x \to +\infty} \int_{x}^{+\infty} \frac{e^{-t}}{t^{\alpha}} \mathrm{d}t = 0$$

3.3 Vers la formule des compléments

20. On calcule:

$$f_{\alpha}(x) - f_{\alpha}'(x) = \int_{0}^{+\infty} \left(\frac{t^{\alpha - 1}}{t + 1} + \frac{t^{\alpha}}{1 + t}\right) e^{-xt} dt$$
$$= \int_{0}^{+\infty} \frac{t^{\alpha - 1}}{1 + t} (1 + t) e^{-xt} dt$$
$$= \int_{0}^{+\infty} t^{\alpha - 1} e^{-xt} dt$$

On fait le changement de variables u = xt:

$$f_{\alpha}(x) - f'_{\alpha}(x) = \int_{0}^{+\infty} \frac{u^{\alpha - 1}}{x^{\alpha - 1}} e^{-u} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\Gamma(\alpha)}{x^{\alpha}}$$

21. La fonction g_{α} est dérivable sur $]0, +\infty[$ car $t \longmapsto \frac{e^{-t}}{t^{\alpha}}$ est continue et intégrable sur $]0, +\infty[$:

$$g_{\alpha}'(x) = \Gamma(\alpha)e^{x} \left(\int_{x}^{+\infty} \frac{e^{-t}}{t^{\alpha}} dt - \frac{e^{-x}}{x^{\alpha}} \right) = g_{\alpha}(x) - \frac{\Gamma(\alpha)}{x^{\alpha}}$$

On en déduit que g_{α} est bien une solution particulière de $y-y'=\frac{\Gamma(\alpha)}{x^{\alpha}}$.

On a de plus $\lim_{x\to +\infty} f_{\alpha}(x) = 0$ d'après la question 18.. La fonction $t\longmapsto \frac{e^{-t}}{t^{\alpha}}$ est intégrable sur $]0,+\infty[$ et $\frac{e^{-t}}{t^{\alpha}} = o\left(e^{-t}\right)$ et donc, on peut intégrer les restes :

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^{\alpha}} dt = o\left(\int_{x}^{+\infty} e^{-t} dt\right) = o(e^{-x})$$

Et donc, on a

$$g_{\alpha}(x) = o(1) \underset{x \to +\infty}{\longrightarrow} 0$$

Et donc, on en déduit que

$$\forall x > 0, f_{\alpha}(x) = g_{\alpha}(x)$$

22. On a f_{α} est continue sur $[0, +\infty[$. De plus, g_{α} se prolonge par continuité en 0 et on a $f_{\alpha}(0) = g_{\alpha}(0)$, ce qui donne :

$$\int_0^{+\infty} \frac{t^{\alpha - 1}}{t + 1} dt = \Gamma(\alpha) \int_0^{+\infty} \frac{e^{-t}}{t^{\alpha}} dt$$

23. D'après la question 14., on a $\int_0^{+\infty} \frac{t^{\alpha-1}}{t+1} dt = \frac{\pi}{\sin(\alpha\pi)}$. D'après la question précédente, on a

$$\frac{\pi}{\sin(\alpha\pi)} = \Gamma(\alpha) \int_0^{+\infty} \frac{e^{-t}}{t^{\alpha}} dt$$
$$= \Gamma(\alpha) \int_0^{+\infty} t^{(1-\alpha)-1} e^{-t} dt$$
$$= \Gamma(\alpha)\Gamma(1-\alpha)$$

24. On fait le changement de variables $u=t^2$ et on a

$$\int_0^{+\infty} e^{-t^2} dt = \frac{1}{2} \int_0^{+\infty} u^{-\frac{1}{2}} e^{-u} du = \frac{1}{2} \Gamma\left(\frac{1}{2}\right)$$

Dans la formule des compléments, on fait $\alpha = \frac{1}{2}$ et on trouve

$$\Gamma\left(\frac{1}{2}\right)^2 = \frac{\pi}{\sin\left(\frac{\pi}{2}\right)} = \pi$$

On en déduit donc que

$$\int_0^{+\infty} e^{-t^2} \mathrm{d}t = \frac{1}{2} \sqrt{\pi}$$

7