Inégalité de log-Sobolev pour la gaussienne

Notations et résultats admis

- Soit la fonction φ définie sur \mathbf{R} par $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.
- Pour $k \in \mathbb{N} \cup \{\infty\}$, on pose $C^k(\mathbb{R})$ l'ensemble des fonctions de classe C^k sur \mathbb{R} à valeurs dans \mathbb{R} .
- On note $CL(\mathbf{R})$ l'ensemble des fonctions de \mathbf{R} dans \mathbf{R} à croissance lente, c'est-àdire :

$$CL(\mathbf{R}) = \left\{ f : \mathbf{R} \to \mathbf{R}, \ \exists C > 0, \ \exists k \in \mathbf{N} \ \text{tel que pour tout } x \in \mathbf{R}, \ |f(x)| \le C \left(1 + |x|^k\right) \right\}$$

- On note $L^{1}\left(\varphi\right)=\left\{ f\in C^{0}\left(\mathbf{R}\right),\ f\varphi\ \mathrm{int\'egrable\ sur\ }\mathbf{R}\right\}$
- Soit $t \in \mathbb{R}_+$. Pour une fonction $f : \mathbb{R} \to \mathbb{R}$, on définit si cela est possible la fonction $P_t(f)$ par :

$$\forall x \in \mathbf{R}, \quad P_t(f)(x) = \int_{-\infty}^{+\infty} f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \varphi(y) \, \mathrm{d}y.$$

— Pour f deux fois dérivable sur $\mathbf R$, on définit sur $\mathbf R$ la fonction L(f) par :

$$\forall x \in \mathbf{R}, \quad L(f)(x) = f''(x) - xf'(x).$$

- Une fonction $P: \mathbf{R} \to \mathbf{R}$ est dite fonction polynomiale en |x| s'il existe $d \in \mathbf{N}$ et des réels a_0, \ldots, a_d tels que pour tout $x \in \mathbf{R}$, $P(x) = \sum_{k=0}^d a_k |x|^k$.
- Soient $f: \mathbf{R}_+ \to \mathbf{R}$ une fonction et $\ell \in \mathbf{R} \cup \{\pm \infty\}$. On admet que $\lim_{t \to +\infty} f(t) = \ell$ si, et seulement si, pour toute suite $(t_n)_{n \in \mathbf{N}}$ de réels positifs telle que $\lim_{n \to +\infty} t_n = +\infty$, on a $\lim_{n \to +\infty} f(t_n) = \ell$.

Partie 1 : Résultats préliminaires

1 ▷ Montrer que toute fonction majorée en valeur absolue par une fonction polynomiale en |x| est à croissance lente. **2** ▷ Montrer que $C^{0}(\mathbf{R}) \cap CL(\mathbf{R}) \subset L^{1}(\varphi)$.

On admet dans toute la suite du problème que $\int_{-\infty}^{+\infty} \varphi(t) dt = 1$.

- 3 ▷ Montrer que $CL(\mathbf{R})$ est un espace vectoriel. Montrer aussi que $CL(\mathbf{R})$ est stable par produit.
- **4** ▷ Soit $t \in \mathbf{R}_+$. Vérifier que la fonction $P_t(f)$ est bien définie pour $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$ et vérifier que P_t est linéaire sur $C^0(\mathbf{R}) \cap CL(\mathbf{R})$.
- **5** ▷ Montrer que pour tout $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$ et tout $x \in \mathbf{R}$,

$$\lim_{t \to +\infty} P_t(f)(x) = \int_{-\infty}^{+\infty} f(y) \varphi(y) dy.$$

6 ▷ Soit $t \in \mathbb{R}_+$. Montrer que si $f \in C^0(\mathbb{R}) \cap CL(\mathbb{R})$, alors $P_t(f) \in C^0(\mathbb{R})$. Montrer aussi que $P_t(f)$ est majorée en valeur absolue par une fonction polynomiale en |x| indépendante de t. En déduire que $P_t(f) \in L^1(\varphi)$.

On admettra dans toute la suite du problème que, si $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$, alors

$$\forall t \in \mathbf{R}_{+}, \quad \int_{-\infty}^{+\infty} P_{t}(f)(x) \varphi(x) dx = \int_{-\infty}^{+\infty} f(x) \varphi(x) dx.$$

7 ▷ Montrer que pour toutes fonctions $f, g \in C^2(\mathbf{R})$ telles que les fonctions f, f', f'' et g soient à croissance lente, on a

$$\int_{-\infty}^{+\infty} L(f)(x) g(x) \varphi(x) dx = -\int_{-\infty}^{+\infty} f'(x) g'(x) \varphi(x) dx.$$

Partie 2 : Dérivée de $P_t(f)$

- Pour $f: \mathbf{R} \to \mathbf{R}$ et $x \in \mathbf{R}$, on note, si cela a un sens, $\frac{\partial P_t(f)(x)}{\partial t}$ la dérivée de la fonction $t \in \mathbf{R}_+ \mapsto P_t(f)(x)$.
- Pour $f: \mathbf{R} \to \mathbf{R}$ et $t \in \mathbf{R}_+$ fixé, on note, si cela a un sens, $P_t(f)'$ (resp. $P_t(f)''$) la dérivée de $x \in \mathbf{R} \mapsto P_t(f)(x)$ (resp. la dérivée seconde de $x \in \mathbf{R} \mapsto P_t(f)(x)$).

8 ▷ Montrer que si $f \in C^1(\mathbf{R}) \cap CL(\mathbf{R})$ telle que $f' \in CL(\mathbf{R})$ et $x \in \mathbf{R}$, alors $t \in \mathbf{R}_+ \mapsto P_t(f)(x)$ est de classe C^1 sur \mathbf{R}_+^* et montrer que pour tout t > 0, on a

$$\frac{\partial P_{t}\left(f\right)\left(x\right)}{\partial t}=\int_{-\infty}^{+\infty}\left(-x\mathrm{e}^{-t}+\frac{\mathrm{e}^{-2t}}{\sqrt{1-\mathrm{e}^{-2t}}}y\right)f'\left(\mathrm{e}^{-t}x+\sqrt{1-\mathrm{e}^{-2t}}y\right)\varphi\left(y\right)\mathrm{d}y.$$

9 > Soient $f \in C^2(\mathbf{R}) \cap CL(\mathbf{R})$ telle que f' et f'' soient à croissance lente et $t \in \mathbf{R}_+$. Montrer que $x \in \mathbf{R} \mapsto P_t(f)(x)$ est de classe C^2 sur \mathbf{R} . Montrer aussi que

$$\forall x \in \mathbf{R}, \quad P_t(f)'(x) = e^{-t} \int_{-\infty}^{+\infty} f'\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \varphi(y) \,dy$$

et

$$\forall x \in \mathbf{R}, \quad P_t\left(f\right)''\left(x\right) = e^{-2t} \int_{-\infty}^{+\infty} f''\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \varphi\left(y\right) \mathrm{d}y.$$

10 ▷ En déduire que pour $f \in C^2(\mathbf{R}) \cap CL(\mathbf{R})$ telle que f' et f'' soient à croissance lente, on a

$$\forall t \in \mathbf{R}_{+}^{*}, \ \forall x \in \mathbf{R}, \quad \frac{\partial P_{t}(f)(x)}{\partial t} = L(P_{t}(f))(x).$$

Partie 3 : Inégalité de log-Sobolev pour la gaussienne

Pour $f \in C^0(\mathbf{R}) \cap CL(\mathbf{R})$ à valeurs strictement positives telle que

$$\int_{-\infty}^{+\infty} f(x) \varphi(x) dx = 1,$$

on définit l'entropie de f par rapport à φ par :

$$\operatorname{Ent}_{\varphi}\left(f\right) = \int_{-\infty}^{+\infty} \ln\left(f\left(x\right)\right) f\left(x\right) \varphi\left(x\right) \mathrm{d}x.$$

Dans la suite de cette partie, f est un élément de $C^2(\mathbf{R})$ à valeurs strictement positives tel que les fonctions f, f', f'' et $\frac{f'^2}{f}$ soient à croissance lente. On suppose aussi que $\int_{-\infty}^{+\infty} f(x) \, \varphi(x) \, \mathrm{d}x = 1.$

11 ▷ Étudier les variations de la fonction $t \mapsto t \ln(t)$ sur \mathbb{R}_+^* . On vérifiera que l'on peut prolonger par continuité la fonction en 0.

IMPRIMERIE NATIONALE - D'après documents fournis

12 \triangleright Justifier que la quantité $\operatorname{Ent}_{\varphi}(g)$ est bien définie pour tout $g \in C^{0}(\mathbf{R}) \cap CL(\mathbf{R})$ à valeurs strictement positives telle que $\int_{-\infty}^{+\infty} g(x) \varphi(x) dx = 1$.

Indication: On pourra utiliser la question 11.

- 13 ▷ Pour $t \in \mathbf{R}_{+}$, on pose $S(t) = \operatorname{Ent}_{\varphi}(P_{t}(f))$. Justifier que S(t) est bien définie.
- 14 ▷ Montrer que S est continue sur R₊.

Indication : On pourra au préalable montrer que, si $x \in \mathbb{R}, t \mapsto P_t(f)(x)$ est continue sur \mathbf{R}_{+} .

- 15 \triangleright Vérifier que l'on a $S(0) = \operatorname{Ent}_{\varphi}(f)$ et $\lim_{t \to +\infty} S(t) = 0$.
- 16 ▷ On admet que S est de classe C^1 sur \mathbf{R}_+^* et que

net que
$$S$$
 est de classe C^{1} sur \mathbf{R}_{+} et que S \mathbf{R}_{+} \mathbf{R}

Montrer que

Fr que
$$\forall t \in \mathbf{R}_{+}^{*}, \quad S'(t) = \int_{-\infty}^{+\infty} L(P_{t}(f))(x) (1 + \ln(P_{t}(f)(x))) \varphi(x) dx.$$

17 \triangleright En admettant que le résultat de la question 7 est valable pour les fonctions $P_t(f)$ et $1 + \ln (P_t(f))$, montrer que

(r)), montrer que
$$\forall t \in \mathbf{R}_{+}^{*}, \quad -S'(t) = e^{-2t} \int_{-\infty}^{+\infty} \frac{P_{t}(f')(x)^{2}}{P_{t}(f)(x)} \varphi(x) dx.$$

18 ⊳ En utilisant l'inégalité de Cauchy-Schwarz, montrer que

'inégalité de Cauchy-Schwarz,
$$\forall t \in \mathbf{R}_{+}^{\bullet}, \quad -S'(t) \leq e^{-2t} \int_{-\infty}^{+\infty} P_{t}\left(\frac{f'^{2}}{f}\right)(x) \varphi(x) \, \mathrm{d}x.$$

19 ⊳ En déduire que l'on a :

$$\forall t \in \mathbf{R}_{+}^{*}, \quad -S'(t) \le e^{-2t} \int_{-\infty}^{+\infty} \frac{f'^{2}(x)}{f(x)} \varphi(x) \, \mathrm{d}x.$$

20 ⊳ Établir l'inégalité suivante

$$\operatorname{Ent}_{\varphi}\left(f\right) \leq \frac{1}{2} \int_{-\infty}^{+\infty} \frac{f'^{2}\left(x\right)}{f\left(x\right)} \varphi\left(x\right) \mathrm{d}x.$$

Fin du problème