Math A – Concours X/ENS 2025 : Proposition de corrigé

Si vous repérez ce qui vous semble une erreur, n'hésitez pas à me contacter :

Y.Hamid: yahya6751290@gmail.com

I. Questions préliminaires :

1. On a h est diagonalisable. Soit $P \in \mathbb{C}[X]$ un polynôme scindé à racines simples annulant h (par exemple π_h).

On a : $P(h) = 0 \implies P(h_W) = 0$, donc h_W est annulé par un polynôme scindé à racines simples.

D'où h_W est diagonalisable.

- **2.a)** Il suffit de montrer que pour tout $k \in \mathbb{N}$, on a dim $\ker(M^k) = \dim \ker((M')^k)$. Par le théorème du rang, cela revient à montrer que $\operatorname{rg}(M^k) = \operatorname{rg}((M')^k)$, ce qui est vrai car la similitude ne modifie pas le rang (multiplication à gauche et à droite par des matrices inversibles). Donc $\forall k \in \mathbb{N}$ on a $\delta_k(M) = \delta_k(M')$
- **2.b)** Soit $r \in \mathbb{N}^*$,

On a (en calculant les puissance de J_r):

$$\forall k \in \mathbb{N}^*, \quad \operatorname{rang}(J_r^k) = \begin{cases} n - k & \text{si } k \le r - 1, \\ 0 & \text{si } k \ge r. \end{cases}$$
 (I.1)

Donc d'après le théorème du rang on a :

$$\forall k \in \mathbb{N}^*, \quad \delta_k(J_r) = \begin{cases} r - (r - 1) - 2(r - r) + 0 = 1 & \text{si } k = r, \\ -(k - 1) + 2k - (k + 1) = 0 & \text{si } k < r, \\ -r + 2r - r = 0 & \text{si } k > r. \end{cases}$$
(I.2)

D'où le résultat.

2.c) Soit M_1 et M_2 deux matrices carrées de taille quelconque et Soit $M = diag(M_1, M_2)$

On pose:

- Pour tout entier r, $T_r = diag(1, ..., 1, 0, ...0)$ où les 1 apparaissent r fois.
- $rang(M_1) = r_1 \text{ et } rang(M_2) = r_2$

Par le théorème équivalence des matrices, il existent P_1, Q_1, P_2, Q_2 des matrices inversibles (de tailles convenables) tel que :

$$\begin{cases} M_1 = P_1.T_{r1}.Q_1 \\ M_2 = P_2.T_{r2}.Q_2 \end{cases}$$

avec cette décomposition on a :

$$M = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix} \begin{pmatrix} T_{r1} & 0 \\ 0 & T_{r2} \end{pmatrix} \begin{pmatrix} Q_1 & 0 \\ 0 & Q_2 \end{pmatrix}$$
 (I.3)

Donc $rang(M) = rang(M_1) + rang(M_2)$

D'où par théorème du rang again : $dimKer(M) = dimKer(M_1) + dimKer(M_2)$

En élevant à la puissance k les deux membres de (I.3) et en appliquant la première partie de la question, on aura le résultat voulu. (par théorème du rang une fois encore!)

II. Algèbre linéaire sur les polynômes de Laurent

3.a) Soit
$$F \in \mathbb{C}[X^{\pm 1}]$$
. On pose $\sum_{k=-p}^{q} f_k X^k$.

On a d'une part : $\hat{\xi}(\Pi(F)) = \Pi(X.\Pi(F))$

Or
$$\Pi(F) = \sum_{k=-p}^{-1} f_k X^k \implies X.\Pi(X) = \sum_{k=-p+1}^{0} f_{k-1} X^k \implies \Pi(X.\Pi(F)) = \sum_{k=-p+1}^{-1} f_{k-1} X^k$$

D'autre part :
$$\hat{\xi}(F) = \Pi(X.F) = \Pi(\sum_{k=-p+1}^{q+1} f_{k-1}X^k) = \sum_{k=-p+1}^{-1} f_{k-1}X^k$$

Donc
$$\hat{\xi}(\Pi(F)) = \hat{\xi}(F)$$

Remarque : on pourrait utiliser la linéarité des deux application et les appliquer en les polynômes de Laurent.

3.b) Comme $P \mapsto P(\xi)(F)$ et $P \mapsto \Pi(PF)$ sont linéaires sur $\mathbb{C}[X]$, on tuilise maintenant la base canonique de $\mathbb{C}[X]$.

Calculons ξ^2 :

Soit F dans D, on a $\xi^2(F) = \hat{\xi}_D(\Pi(XF)) = \hat{\xi}(XF) = \Pi(X^2F)$

Par récurrence simple, on montre que pour tout $k \in \mathbb{N}^*$ $\xi^k(F) = \Pi(X^k F)$

Et c'est vrai aussi pour k=0 car $\xi^0(F)=F$ et $\Pi(X^0F)=\Pi(F)=F$

Donc pour tout $k \in \mathbb{N}$ $\xi^k(F) = \Pi(X^k F)$

D'où le résultat.

4) Soit $n \in \mathbb{N}$

On a

$$\xi^n: D \to D$$

 $X \mapsto \Pi(X^n F)$

Soit
$$G \in D$$
 de la forme $G = \sum_{k=-p}^{-1} g_k X^k$

On pose
$$F = \sum_{k=-p}^{-1} g_k X^{-n+k} \in D$$

On a bien
$$X^nF = G$$
 donc $\xi^n(F) = G$

D'où la surjectivité de ξ^n

On a
$$Ker(\xi^n) = \{ F \in D \mid \xi^n(F) = 0_D \} = \{ F \in D \mid X^n F \in Ker(\Pi) \} = \{ F \in D \mid X^n F \in \mathbb{C}[X] \}$$

donc une base de $Ker(\xi^n)$ est $(X^{-n},...,X^{-1})$

5 Soit $r \in \mathbb{N}^*$.

Montrons que
$$D_r = Vect(X^{-r+k})_{0 \le k \le r-1}$$

Soit $k \in [0, r-1]$ et soit A un sous espace vectoriel de D tel que $X^{-r} \in A$ et $\xi(D_r) \subseteq D_r$

on a
$$X^{-r} \in A \implies \xi^k(X^{-r}) = X^{-r+k} \in A$$

Donc
$$Vect(X^{-r+k})_{0 \le k \le r-1} \subseteq A$$

D'où
$$Vect(X^{-r+k})_{0 \le k \le r-1} = D_r$$

On en déduit immédiatement que la matrice de l'endomorphisme ξ_{D_r} induit par ξ sur D_r dans cette base est J_r

III. Prolongements compatibles

- **6)a)** Pour montrer que J est un idéal de $\mathbb{C}[X]$ on montre que :
 - (J, +) est un sous groupe de $\mathbb{C}[X]$.
 - $\forall (P,Q) \in (J,\mathbb{C}[\mathbb{X}]) \quad P.Q \in J \text{ (car } \mathbb{C}[\mathbb{X}] \text{ est commutatif)}$

La première découle de la stabilité par combinaison linière de W.

Pour la deuxième, si $P \in J$, alors $P(u)(v) \in W$, donc $\forall k \in \mathbb{N}$ $u^k(P(u)(v)) \in W$

Donc par linéarité de $\mathbb{C}[X]$ pour tout $Q \in \mathbb{C}[X]$ $(Q.P)(u)(v) \in W$

6)b) On a u est nilpotant, donc $\exists n \in \mathbb{N}$ tel que $u^n = 0$

donc
$$X^n(u)(v)=0$$
. D'où $X^n\in J$ (Notons ici que n est non nul car sinon $id_v=0$!)

Comme $\mathbb{C}[X]$ est principale alors $\exists P \in \mathbb{C}[X]$ tel que $J = \langle P \rangle$

Or puisque $X^n \in J$ alors P divise X^n

Donc $\exists r \in \mathbb{N}$ tel que $J = \langle X^r \rangle$ (Notons que $r \neq 0$ car sinon $1(u)(v) = v \in W$)

6)c) En posant $P = 0 \in \mathbb{C}[X]$ on a $W \subseteq W'$. Et pour $P = 1 \in \mathbb{C}[X]$ et $w = 0 \in W$ on a $v \in W'$.

Soit
$$x \in W'$$
. $\exists (P, w) \in \mathbb{C}[X] \times W$ tel que : $x = P(u)(v) + w$

On a $u(w) \in W$.

On en déduit que, si l'on pose $Q = XP \in \mathbb{C}[X]$, on a, par linéarité de u:

$$u(x) = u \circ P(u)(v) + u(w) = Q(u)(v) + u(w) \in W'.$$

Donc
$$u(W') \subseteq W'$$

- **6)d)** Puisque ξ^r est surjectif de D vers D et π est à valeurs dans D, le résultat est immédiat.
- **6)e)** On a $\xi \circ \varphi = \varphi \circ u_W$

Donc par récurrence sur $k \in \mathbb{N}$:

$$\forall k \in \mathbb{N}, \ \xi^k \circ \varphi = \varphi \circ u_W^k.$$

Donc par linéarité pour tout polynôme $Q \in \mathbb{C}[X]$ on a : $Q(\xi) \circ \varphi = \varphi \circ Q(u_W)$

Maintenant supposons que P(u)(v) = w, donc $P(u)(v) \in W$, càd $P \in J = \langle X^r \rangle$

Donc il existe $Q \in \mathbb{C}[X]$ tel que $P = X^rQ$

On a donc;
$$\varphi(w) = \varphi(P(u)(v)) = \varphi(Q(u)(u^r(v))) = Q(\xi) \circ \varphi(u^r(v))$$
 (notons que $u^r(v) \in W$)

Donc D'après la question précédente :

$$\varphi(w) = Q(\xi) \circ \xi^r(F_v) = (X^r Q)(\xi)(F_v) = P(\xi)(F_v)$$

- **6)f)** (Question un peu technique)
 - Montrons que $\varphi'(x)$ ne depend que de x.

Soit donc
$$P_1, P_2 \in \mathbb{C}[X]$$
 et $w_1, w_2 \in W$ tel que $x = P_1(u)(v) + w_1 = P_2(u)(v) + w_2$

Donc
$$(P_1 - P_2)(u)(v) + (w_1 - w_2) = 0$$
 (On a bien $(P_1 - P_2) \in \mathbb{C}[X]$ et $(w_1 - w_2) \in W$)

Donc d'après la question précédente $(P_1 - P_2)(\xi)(F_v) + \varphi(w_1 - w_2) = 0$

Et par linéarité de φ on déduit que: $P_1(\xi)(F_v) + \varphi(w_1) = P_2(\xi)(F_v) + \varphi(w_2)$

D'où φ' ne dépend pas des choix de P et w.

- Montrons maintenant que φ est la restriction de φ' à W

Soit
$$w \in W$$
. On a: $w = 0(u)(v) + w$ donc $\varphi'(w) = 0(\xi)(F_v) + \varphi(w) = \varphi(w)$

D'où $\varphi' = \varphi \operatorname{sur} W$.

- Montrons que $\xi \circ \varphi' = \varphi' \circ u_{W'}$

Soit
$$x \in W'$$
 tel que $x = P(u)(v) + w$

On a d'une part :

$$\xi(\varphi'(x)) = \xi(P(\xi)(F_v) + \varphi(w)) = \xi(P(\xi)(F_v)) + \xi(\varphi(w)) = (XP)(\xi)(F_v) + \varphi(u(w))$$

Et d'autre part :

 $\varphi'(u(x)) = \varphi'((XP)(u)(v) + u(w))$ et on a bien $XP \in \mathbb{C}[X]$ et $u(w) \in W$ par stabilité de u.

Donc
$$\varphi'(u(x)) = (XP)(\xi)(F_v) + \varphi(u(w))$$

D'où l'égalité. On a montrer donc que φ' est est un prolongement de φ à W' compatible avec u.

7) On est en dimension finie, donc le plus naturel est de raisonner par récurrence. Mais nous procédons autrement.

Soit $A = \{W' \text{ sev de } V \mid W \subseteq W', \varphi \text{ se prolonge en } \varphi' \text{ sur } W' \text{ compatible avec } u\}$

Et soit
$$B = \{\dim(W') \mid W' \in A\}.$$

On a $W \in A$, donc $\dim(W) \in B$, ceci implique que $B \neq \emptyset$

Et B est clairement une partie de \mathbb{N} majorée par dim(V) donc admet bien un maximum.

On pose donc r = max(B), et W' un sev de V où le max est atteint.

Supposons par absurde que $V \neq W'$, càd $W' \subsetneq V$. Soit donc $v \in V'$ tel que $v' \notin W'$

Soit φ' un prolongement sur W' compatible avec u

On pose donc: $W'' = \{P(u)(v') + w \mid P \in \mathbb{C}[X] \text{ et } w \in W'\}.$

On a bien $W' \subseteq W$ " puisque $v' \in W$ " alors que $v' \notin W'$

Donc d'après ce qui précède, φ' admet un prolongement sur W" φ compatible avec u.

C'est en particulier un prolongement de φ compatible avec u. donc $W'' \in A$.

Par contre : dim(W') = r < dim(W'') ce qui est absurde.

Donc V = W' ce qui achève la démonstration.

IV. Théorème de décomposition pour les endomorphismes nilpotents

8)a) Soit $(a_0,...,a_{n-1}) \in \mathbb{C}^n$ tel que $\sum_{k=0}^{n-1} a_k u^k(v_0) = 0$. En composant par u^{n-1} l'égalité on obtient que $a_0 = 0$ car $u^{n-1}(v_0) \neq 0$. On continue donc par récurrence finie en composant à chaque fois par u^{n-i} pour annuler le coefficient a_{i-1} pour $i \in [|1, n-1|]$. Ceci implique que $B = (v_0, u(v_0), ..., u^{n-1}(v_0))$ est libre. Il est claire que $v_0 \in W = Vect(v_0, u(v_0), ..., u^{n-1}(v_0))$. Et la stabilité par u découle directement du fait que u est nilpotent d'indice n. Et on a $\max_B u(u_W) = J_n$

8)b) Définissons φ sur W par l'image de chaque élément de B :

$$\forall k \in [0, n-1], \varphi(u^k(v_0)) = X^{k-n}$$
. (Bien définie car $k < n$).

Si
$$w = \sum_{k=0}^{n-1} a_k u^k(v_0), \ w' = \sum_{k=0}^{n-1} a'_k u^k(v_0) \in W$$
 tel que $\varphi(w) = \varphi(w'), \text{ càd} : \varphi(w - w') = 0$

Donc $\sum_{k=0}^{n-1} (a_k - a_k') X^{k-n} = 0$, ceci implique par liberté de $(X^{k-n})_{0 \le k \le n-1}$ que $a_k = a_k'$ pour tout $k \in [[0, n-1]]$. D'où l'injectivité.

Pour montrer que : $\xi \circ \varphi = \varphi \circ u_W$ il suffit de montrer l'égalité sur la base B. Soit $k \in [0, n-1]$

D'une part on a : $\xi(\varphi(u^k(v_0))) = \xi(X^{k-n})$:

- Pour $k \in [|0, n-2|]$ on a $\xi(X^{k-n}) = X^{k-n}$
- Pour k = n 1 on a $\xi(X^{n-n}) = \xi(1) = 0$

D'autre part : $\varphi(u_W(u^k(v_0))) = \varphi(u^{k+1}(v_0))$:

- Pour $k \in [|0, n-2|]$ on a $\varphi(u^{k+1}(v_0)) = X^{k-n}$
- Pour k = n 1 on a $\varphi(u^{n-1+1}(v_0)) = \varphi(u^n(v_0)) = \varphi(0) = 0$

Ce qui achève la démonstration.

8)c) On montre par récurrence sur $k \in \mathbb{N}$:

$$\forall k \in \mathbb{N}, \ \xi^k \circ \varphi = \varphi \circ u_W^k.$$

Pour k = n on a $\xi^k \circ \psi = 0$ car u est nilpotent d'indice n. D'où $Im(\psi) \subseteq Ker(\xi^n)$

8)d) Soit $x \in Ker(\psi)$, alors $\psi(u(x)) = \xi(\psi(x)) = \xi(0) = 0$. Donc $u(Ker(\psi)) \subseteq Ker(\psi)$.

Si $x \in Ker(\psi) \cap W$. Donc $\psi_W(x) = \varphi(x) = 0$. Par injectivité de φ ceci implique que x = 0.

Donc $Ker(\psi)$ et W sont en somme directe.

Montrons que $Ker(\psi) \oplus W = V$

Soit $x \in V$. On a d'après la question précédente $Im(\psi) \subseteq Ker(\xi^n)$.

Or d'après la question 4), $Ker(\xi^n) = Vect(X^{k-n})_{0 \le k \le n-1} = \varphi(W)$. Donc $\psi(x) \in \varphi(W)$.

Il existe donc $z \in W$ tel que $\psi(x) = \varphi(z) = \psi(z)$. Il en découle que $x - z \in Ker(\psi)$.

On a montrer donc que $V \subseteq Ker(\psi) \oplus W$ ce qui conclue la question.

9) Existence.

On va montrer l'existence par récurrence sur la dimension de V

Explicitons l'hypothèse de récurrence pour tout entier $k \geq 1$:

 H_k : "Pour tout espace vectoriel V de dimension finie $\leq k$, si u est un endomorphisme nilpotent de V alors il existe une base B de V, un entier naturel s et des entiers naturels non nuls $r_1 \geq ... \geq r_s$ tel que $\mathop{\mathrm{Mat}}_{R}(u) = diag(J_{r_1}, ..., J_{r_s})$ "

Pour k = 1 rien à démontrer.

Soit k un entier ≥ 1 . Supposons H_k .

Soit V un ev de dimension k+1 et u endomorphisme de V nilpotent d'indice n.

Si dim(V) = n alors pour s = 1 et $r_1 = n$ et $B = (v_0, u(v_0), ..., u^{n-1}(v_0))$ avec $v_0 \in V$ tel que $u^{n-1}(v_0) \neq 0$ on aura $\max_B (u) = J_n$.

Si dim(V) > n alors en posant ψ comme défini précédemment on a $Ker(\psi)$ un sous espace vectoriel (non trivial) de V stable par u (on a bien $u_{|Ker(\psi)}$ est nilpotent). On applique donc l'hypothèse de récurrence sur $Ker(\psi)$: Il existe une base B de $Ker(\psi)$, un entier naturel p et des entiers naturels non nuls $r_1 \ge ... \ge r_s$ tel que $\mathop{\mathrm{Mat}}_R(u_{|Ker(\psi)}) = diag(J_{r_1}, ..., J_{r_s})$.

Or $V = Ker(\psi) \oplus W$, donc en concaténant B et $(v_0, u(v_0), ..., u^{n-1}(v_0))$ (qui est une base de W) on aura une base de V dans laquelle $\operatorname{Mat}(u) = \operatorname{diag}(J_{r_1}, ..., J_{r_s}, J_n)$. En permutant les blocs de jordan de la matrice $\operatorname{Mat}(u)$ de sort que leurs tailles soient décroissantes, et en posant s = p + 1 on obtient le résultat. (changement de base). ce qui achève l'hérédité.

10) Supposons que $\operatorname{Mat}_B(u) = \operatorname{diag}(J_{r_1},...,J_{r_{s_1}})$ et $\operatorname{Mat}_B(u) = \operatorname{diag}(J_{r'_1},...,J_{r'_{s_2}})$ sont deux écriture matricielle de u comme défini précédemment.

Puisque les deux matrices sont semblables alors ils ont le même rang.

Donc:
$$rang(Mat(u)) = rang(Mat(u)) \implies \sum_{k=1}^{s_1} (r_k - 1) = \sum_{k=1}^{s_2} (r'_k - 1).$$

Donc $dim(V) - s_1 = dim(V) - s_2$. D'où $s_1 = s_2 = s$.

D'après la question 2, on a pour tout entier non nul k:

$$\delta_k(diag(J_{r_1},..,J_{r_{s_1}})) = \delta_k(diag(J_{r'_1},..,J_{r'_{s_1}})), \text{ donc } \sum_{i=1}^s \delta_k(J_{r_i}) = \sum_{i=1}^s \delta_k(J_{r'_i}).$$

Ceci implique d'après 2b) que le nombre de bloc de taille k dans les deux matrices est égale,

ceci pour tout k donc $(r_1,..,r_s)=(r'_1,..,r'_s)$ (les éléments sont ordonnés)

V. Version « graduée » du théorème de décomposition

11)a) X^N-1 est un polynôme scindé à racine simple dans $\mathbb{C}[\mathbb{X}]$ annulant h, donc h est diagonalisable.

11)b Soit
$$x \in V_j$$
, On a $h(u(x)) = \zeta.u(h(x)) = \zeta.u(\zeta^j x) = \zeta^{j+1}u(x)$. Donc $u(x) \in V_{j+1}$. D'où $u(V_j) \subseteq V_{j+1}$.

11)c Soit k un entier relatif. Notons d'abord qu'un sous-espace propre de h est l'un des V_j (éventuellement on peut avoir des $V_j = \{0\}$), donc puisque h est diagonalisable alors on a :

$$V = \bigoplus_{i=0}^{N-1} V_i$$

Donc il suffit de calculer $h^k \circ u \circ h^{-k}$ sur chaque V_i .

Soit donc $x \in V_j$. On a $h(x) = \zeta^j x$.

- Si $k \ge 0$, alors $h^k(x) = \zeta^{jk}x$ (par récurrence)
- Si $k \le -1$, donc $h^{-k}(x) = \zeta^{-jk}x$, alors $x = \zeta^{-jk}h^k(x)$ impliquant $h^k(x) = \zeta^{jk}x$.

Rappelons que $u(x) \in V_{j+1}$.

$$h^k \circ u \circ h^{-k}(x) = h^k \circ u(\zeta^{-jk}x) = \zeta^{-jk}h^k(u(x)) = \zeta^{-jk}.\zeta^{-(j+1)k}u(x) = \zeta^k u(x)$$

Donc:

$$\forall k \in \mathbb{Z}, \ h^k \circ u \circ h^{-k} = \zeta^k u$$

Soit l un entier naturel. On a : $h \circ u^l \circ h^{-1} = (h \circ u \circ h^{-1})^l = (\zeta u)^l = \zeta^l u^l$

- **12)a** p est le projecteur sur W parallèlement à W'. Or puisque u stabilise W et W', la commutativité est évidente.
- **12)b** On a pour tout $k \in [|0, N-1|]$:

$$h^k \circ p \circ h^{-k}(V) \subseteq h^k \circ p(V) \subseteq h^k(W) \subseteq W$$
. Donc $\frac{1}{N} \sum_{k=0}^{N-1} h^k \circ p \circ h^{-k}(V) \subseteq W$.

D'où $Im(\bar{p}) \subseteq W$.

Soit $w \in W$.

On a
$$\bar{p}(w) = \frac{1}{N} \sum_{k=0}^{N-1} h^k \circ p \circ h^{-k}(w) = \frac{1}{N} \sum_{k=0}^{N-1} h^k (h^{-k}(w)) = \frac{1}{N} \sum_{k=0}^{N-1} w = w \text{ (car } h^{-k}(w) \in W).$$

D'où $\bar{p}(w) = w$

12)c On a bien que \bar{p} est une application linéaire sur V. Calculons \bar{p}^2

$$\text{On a}: \ \bar{p}^2 = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{i=0}^{N-1} h^k \circ p \circ h^{-k} \circ h^i \circ p \circ h^{-i} = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{i=0}^{N-1} h^k \circ p \circ h^{-k+i} \circ p \circ h^{-i}$$

$$\text{Donc } \bar{p}^2 = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{i=0}^{N-1} h^k \circ h^{-k+i} \circ p \circ h^{-i} = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{i=0}^{N-1} h^i \circ p \circ h^{-i} = \frac{N}{N^2} \sum_{i=0}^{N-1} h^i \circ p \circ h^{-i} = \bar{p}$$

Donc \bar{p} est un projecteur. On a alors $Im(\bar{p}) = Ker(\bar{p} - id_V)$

Or d'après 12)b) on a $Im(\bar{p}) \subseteq W$ et $W \subseteq Ker(\bar{p} - id_V)$.

Donc on a $Im(\bar{p}) \subseteq W \subseteq Ker(\bar{p} - id_V) = Im(\bar{p})$. D'où $Im(\bar{p}) = W$

12)d Soit $k \in [|0, N - 1|]$.

On a : $u \circ h^k \circ p \circ h^{-k} = \zeta^{-k} \circ h^k \circ u \circ p \circ h^{-k}$. Or p et u commutent.

Donc $u \circ h^k \circ p \circ h^{-k} = \zeta^{-k} \circ h^k \circ p \circ u \circ h^{-k} = \zeta^{-k} \zeta^k \circ h^k \circ p \circ h^{-k} \circ u$.

Donc en appliquant la somme on a bien $u \circ \bar{p} = \bar{p} \circ u$.

Maintenant $h \circ h^k \circ p \circ h^{-k} = h^{k+1} \circ p \circ h^{-(k+1)} \circ h$

Donc
$$h \circ \bar{p} = \frac{1}{N} (\sum_{k=0}^{N-1} h^{k+1} \circ p \circ h^{-(k+1)}) \circ h = \frac{1}{N} (\sum_{k=1}^{N} h^k \circ p \circ h^{-k}) \circ h$$

Ainsi
$$h \circ \bar{p} = \frac{1}{N} (\underline{-h^0 \circ p \circ h^0} + \underline{h^N \circ p \circ h^N} + \sum_{k=0}^{N-1} h^k \circ p \circ h^{-k}) \circ h = \bar{p} \circ h$$

- **12)e** \bar{p} commute avec u et h, alors $Ker(\bar{p})$ est stable par u et h. Or puisque \bar{p} est un projecteur alors $Ker(\bar{p})$ et $Im(\bar{p}) = W$ sont supplémentaire.
- **13)a** Supposons que pour tout vecteur propre v de h on a $u^{n-1}(v) = 0$. Alors u^{n-1} est nul sur chaque sous espace propre de h qui est diagonalisable. Donc $u^{n-1} = 0$. Ce qui est absurde. Donc un tel vecteur existe.
- 13)b On démontre le résultat voulu par récurrence sur la dimension.

Si V est de dimension 1, alors l'endomorphisme nilpotent u est nul (donc de matrice J_1 dans toute base) et la matrice de h dans toute base est d'ordre 1, donc diagonale, son unique coefficient est ζ^k avec $k \in [|0, N-1|]$. Cela initialise la récurrence.

Soit $k \in \mathbb{N}^*$. Supposons le résultat vrai pour tout espace vectoriel V de dimension $\leq k$ et tous endomorphismes u et h de V vérifiant les propriétés de cette partie.

Soit V un espace vectoriel de dimension k+1, et soient u et h vérifiant les propriétés de cette partie. Soit n l'indice de nilpotence de u.

Soitt v, un vecteur propre de h, tel que $u^{n-1}(v) \neq 0$ (il en existe par la question précédente), et on pose

$$W = Vect((v, u(v), \dots, u^{n-1}(v))).$$

Par la question 8.(a), c'est un sous-espace stable par u, et la matrice de u_W dans la base $(v, u(v), \ldots, u^{n-1}(v))$ est J_n .

De plus, comme v est un vecteur propre de h, et que les valeurs propres de h sont de la forme ζ^a avec $a \in [|0, N-1|]$, on a :

$$h(v) = \zeta^a v$$
.

On en déduit, par la deuxième identité de la question :

$$\forall \ell \in [|0, N - 1|], \quad h(u^{\ell}(v)) = \zeta^{\ell} u^{\ell}(h(v)) = \zeta^{\ell} u^{\ell}(\zeta^{a}v) = \zeta^{a+\ell} u^{\ell}(v).$$

Donc W est stable par h, et la matrice de h_W relativement à la base $(v, u(v), \dots, u^{n-1}(v))$ est :

$$\begin{pmatrix} \zeta^a & 0 & \cdots & 0 \\ 0 & \zeta^{a+1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \zeta^{a+n-1} \end{pmatrix} = D_{n,a}.$$

Si $n = \dim(V)$, alors le résultat est démontré pour u et h.

Sinon, on introduit un supplémentaire W' de W dans V, stable par u et h, dont l'existence a été établie dans la question 12. Il est non trivial, puisque c'est le cas de W, et la stabilité par u et h assure qu'on peut appliquer l'hypothèse de récurrence aux endomorphismes $u_{W'}$ et $h_{W'}$ de W', qui vérifient les mêmes propriétés que u et h. On en déduit l'existence d'une base B de W' telle que les matrices de $u_{W'}$ et $h_{W'}$ dans cette base soient respectivement $\operatorname{diag}(J_{r_1}, \ldots, J_{r_s})$ et $\operatorname{diag}(D_{r_1,a_1}, \ldots, D_{r_s,a_s})$ pour des r_i et a_i adéquats.

En concaténant $(v, u(v), \dots, u^{n-1}(v))$ et B, on obtient une base de V dans laquelle les matrices de u et h sont respectivement :

$$diag(J_n, J_{r_1}, \dots, J_{r_s})$$
 et $diag(D_{n,a}, D_{r_1,a_1}, \dots, D_{r_s,a_s})$.

Cela donne l'hérédité.

14)a) D'après 11)b), on a :

$$u^{3}(V_{1}) \subseteq u^{2}(V_{2}) \subseteq u(V_{3}) \subseteq V_{4} = V_{0} = \{0\}.$$

On en déduit que $u_{|V_1}^3$ est nul, et de même pour V_2 et V_3 .

Comme $V_1 \oplus V_2 \oplus V_3 = V$ car h est diagonalisable, on en déduit que : $u^3 = 0$.

14)b) On a $\zeta = e^{2i\pi/4} = i$. Nous cherchons pour u et h des endomorphismes dont les matrices dans une base donnée sont $\operatorname{diag}(J_{r_1},\ldots,J_{r_s})$ et $\operatorname{diag}(D_{r_1,a_1},\ldots,D_{r_s,a_s})$ respectivement, avec les $a_i \in \{1,3\}$ (1 n'est pas valeur propre de h). Le fait que u^3 soit nul impose de prendre des blocs de taille au plus 3, puisque $\max(r_1,\ldots,r_s)$ est l'indice de nilpotence de u. Ainsi les types possibles sont dans $\{1,3\}^2$. Or, tous les couples de $\{1,3\}^2$ ne se réalisent pas, à cause de l'inclusion : $u(V_3) \subset V_4 = \{0\}$: ceci impose que si i_3 apparaît sur la diagonale de D_{r_i,a_i} , la colonne correspondante de J_{r_i} doit être nulle. Or, la seule colonne nulle de J_{r_i} est sa dernière, donc si i_3 apparaît sur la diagonale de D_{r_i,a_i} , alors il doit être son dernier coefficient diagonal. Les couples réalisant ceci sont :

$$(1,1), (1,2), (1,3), (2,1), (2,2), (3,1).$$

Réciproquement, tous ces types peuvent se réaliser. Il suffit en effet de prendre pour (u, h) les endomorphismes représentant canoniquement les matrices suivantes (on ne donne des exemples qu'en petite dimension ; mais en dimension quelconque, il suffit de prendre des matrices diagonales par blocs dont les blocs sont ceux ci-dessous) :

$$\left((0), (i) \right), \left((0), (i^2) \right), \left((0), (i^3) \right), \left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & i^2 \end{pmatrix} \right), \left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} i^2 & 0 \\ 0 & i^3 \end{pmatrix} \right), \left(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} i & 0 & 0 \\ 0 & i^2 & 0 \\ 0 & 0 & i^3 \end{pmatrix} \right).$$

Ces couples vérifient bien les hypothèses $h^4 = \mathrm{id}_V$ et $h \circ u \circ h^{-1} = iu$.

- **14)c)** (c) On remarque que pour les six types de la question précédente, les différentes dimensions se lisent matriciellement. En posant n(r,a) le nombre de couples de type (r,a) dans la réduction ci-avant, et ce pour tout (r,a), on a les relations suivantes :
 - La dimension de V_1 est la somme des couples de type (1,1), (2,1), et (3,1), soit :

$$\dim(V_1) = n(1,1) + n(2,1) + n(3,1).$$

- La dimension de V_2 est la somme des couples de type (1,2), (2,1), (2,2), et (3,1), soit :

$$\dim(V_2) = n(1,2) + n(2,1) + n(2,2) + n(3,1).$$

- La dimension de V_3 est la somme des couples de type (1,3), (2,2), et (3,1), soit :

$$\dim(V_3) = n(1,3) + n(2,2) + n(3,1).$$

- r_1 est le nombre de couples de type (2,1) et (3,1), soit :

$$r_1 = n(2,1) + n(3,1).$$

- r_2 est le nombre de couples de type (2,2) et (3,1), soit :

$$r_2 = n(2,2) + n(3,1).$$

- $r_{2,1}$ est le nombre de couples de type (3,1), soit :

$$r_{2,1} = n(3,1).$$

En résolvant ce système linéaire vérifié par les n(r,a), on obtient après calculs :

$$n(1,1) = \dim(V_1) - r_1,$$

$$n(1,2) = \dim(V_2) - r_1 - r_2 + r_{2,1},$$

$$n(1,3) = \dim(V_3) - r_2,$$

$$n(2,1) = r_1 - r_{2,1},$$

$$n(2,2) = r_2 - r_{2,1},$$

$$n(3,1) = r_{2,1},$$

d'où le résultat.

VI. Classification des couples de matrices rectangulaires

15 On procède par implications circulaires.

$$-(i) \iff (ii)$$
:

Par définition de l'équivalence simultanée.

-(ii) implique (iii):

Supposons l'existence de $P \in GL_m(\mathbb{C})$ et $Q \in GL_n(\mathbb{C})$ telles que $A' = QAP^{-1}$ et $B' = PBQ^{-1}$. On a :

$$M_{A',B'} = \begin{pmatrix} 0_{m,n} & I_m \\ I_n & 0_{n,m} \end{pmatrix} \begin{pmatrix} A' & 0_n \\ 0_m & B' \end{pmatrix} = \begin{pmatrix} 0_{m,n} & I_m \\ I_n & 0_{n,m} \end{pmatrix} \begin{pmatrix} Q & 0_n \\ 0_m & P \end{pmatrix} \begin{pmatrix} A & 0_n \\ 0_m & B \end{pmatrix} \begin{pmatrix} P^{-1} & 0_n \\ 0_m & Q^{-1} \end{pmatrix}.$$

Donc:

$$M_{A',B'} = \begin{pmatrix} 0_{m,n} & I_m \\ I_n & 0_{n,m} \end{pmatrix} \begin{pmatrix} Q & 0_n \\ 0_m & P \end{pmatrix} \begin{pmatrix} 0_{n,m} & I_n \\ I_m & 0_{m,n} \end{pmatrix} \begin{pmatrix} 0_m & B \\ A & 0_n \end{pmatrix} \begin{pmatrix} P^{-1} & 0_n \\ 0_m & Q^{-1} \end{pmatrix}$$

Ainsi:

$$M_{A',B'} = \begin{pmatrix} P & 0_n \\ 0_m & Q \end{pmatrix} \begin{pmatrix} 0_m & B \\ A & 0_n \end{pmatrix} \begin{pmatrix} P^{-1} & 0_n \\ 0_m & Q^{-1} \end{pmatrix}$$

Posons alors : $R = \begin{pmatrix} P & 0_{m,n} \\ 0_{n,m} & Q \end{pmatrix}$, qui est bien carrée d'ordre m+n et inversible puisque son déterminant est $\det(P)\det(Q) \neq 0$. Les égalités ci-dessus démontrent que l'on a $M_{A',B'} = RM_{A,B}R^{-1}$.

De plus:

$$RHR^{-1} = \begin{pmatrix} P & 0_{m,n} \\ 0_{n,m} & Q \end{pmatrix} \begin{pmatrix} I_m & 0_{m,n} \\ 0_{n,m} & -I_n \end{pmatrix} \begin{pmatrix} P^{-1} & 0_{m,n} \\ 0_{n,m} & Q^{-1} \end{pmatrix} = \begin{pmatrix} PP^{-1} & 0_{m,n} \\ 0_{n,m} & -QQ^{-1} \end{pmatrix} = H,$$

donc (ii) implique bien (iii).

-(iii) implique (i):

Il suffit de montrer que (iii) implique (ii)

Supposons qu'il existe $R \in GL_{m+n}(\mathbb{C})$ telle que $M_{A',B'} = RM_{A,B}R^{-1}$ et $H = RHR^{-1}$. L'implication précédente indique que R devrait être diagonale par blocs, ce que nous allons commencer par démontrer. Notons :

$$R = \begin{pmatrix} P & T \\ S & Q \end{pmatrix},$$

avec $P \in M_m(\mathbb{C}), Q \in M_n(\mathbb{C}), T \in M_{m,n}(\mathbb{C})$ et $S \in M_{n,m}(\mathbb{C})$. On a :

$$HR = RH, \quad \text{ce qu'on peut réécrire ainsi}: \quad \begin{pmatrix} P & T \\ -S & -Q \end{pmatrix} = \begin{pmatrix} P & -T \\ S & -Q \end{pmatrix},$$

d'où T=-T, et S=-S. Ceci implique la nullité des matrices T et S, donc :

$$R = \begin{pmatrix} P & 0_{m,n} \\ 0_{n,m} & Q \end{pmatrix}.$$

L'inversibilité de R implique celle de P et Q, puisque $\det(P)\det(Q)=\det(R)\neq 0$. On a en outre :

$$R^{-1} = \begin{pmatrix} P^{-1} & 0_{m,n} \\ 0_{n,m} & Q^{-1} \end{pmatrix}.$$

L'égalité $M_{A',B'} = RM_{A,B}R^{-1}$ équivaut alors, par identification des blocs, à :

$$A' = QAP^{-1}, \quad B' = PBQ^{-1}.$$

Cela démontre que (ii) implique (ii) et donc impliquant (i).

16)a) On a : $H^2 = I_{m+n}$, et $HMH^{-1} = -M$. En élevant la relation précédente à la puissance k, on en déduit :

$$\forall k \in \mathbb{N}, \quad HM^kH^{-1} = (HMH^{-1})^k = (-M)^k.$$

Les applications linéaires $P \mapsto HP(M)H^{-1}$ et $P \mapsto P(-M)$ coïncident sur $\{X^k\}_{k \in \mathbb{N}}$ qui engendre $\mathbb{C}[X]$, donc elles sont égales :

$$\forall P \in \mathbb{C}[X], \quad HP(M)H^{-1} = P(-M).$$

16)b) Soit $x \in \mathbb{C}^*$. On a :

$$\begin{pmatrix} I_m & 0_{m,n} \\ 1/x & I_n \end{pmatrix} (xI_{m+n} - M) = \begin{pmatrix} I_m & 0_{m,n} \\ 1/x & I_n \end{pmatrix} \begin{pmatrix} xI_m - B & 0_{n,m} \\ -A & xI_n \end{pmatrix} = \begin{pmatrix} xI_m - B & 0_{n,m} \\ 0_{m,n} & xI_n - A \end{pmatrix}$$

 $\mathrm{Donc}:$

$$\det(I_m)\det(I_n)\chi_M(x) = \det(xI_m)\det\left(xI_n - \frac{1}{x}AB\right) = x^m \cdot \frac{1}{x^n}\det\left(x^2I_n - AB\right).$$

Autrement dit:

$$\chi_M(x) = x^{m-n} \chi_{AB}(x^2).$$

Quitte à multiplier par x^{n-m} , nous avons une égalité polynomiale valable en une infinité de nombres complexes, donc l'égalité est dans $\mathbb{C}(X)$. On a démontré :

$$X^{n-m}\chi_M = \chi_{AB}(X^2).$$

Comme le membre de droite est un polynôme pair, si λ est une racine d'ordre k de $\chi_{AB}(X^2)$, alors $-\lambda$ l'est aussi. Il en est de même pour les racines de χ_M , où il faut simplement traiter le cas $\lambda=0$ à part à cause du facteur X^{n-m} . Mais dans ce cas, $\lambda=-\lambda$, et il est donc trivial que λ et $-\lambda$ sont racines de même ordre de multiplicité.

D'où le résultat, puisque les racines de χ_M sont les valeurs propres de M.

16)c) Soit $\chi_M(X) = X^r Q(X)$ où $Q(0) \neq 0$.

D'après le théorème de décomposition des noyaux, puisque X^r et Q(X) sont premiers entre eux (car $Q(0) \neq 0$), on a :

$$\ker(\chi_M(M)) = \ker(M^r Q(M)) = \ker(M^r) \oplus \ker(Q(M)).$$

Or $\chi_M(M) = 0$, donc $\ker(\chi_M(M)) = \mathbb{C}^{m+n}$. Ainsi, $\mathbb{C}^{m+n} = \ker(M^r) \oplus \ker(Q(M))$.

Stablité par H:

Soit $v \in \ker(M^r)$, donc $M^r v = 0$. On a $HM^r H^{-1} = (-1)^r M^r$, donc $M^r H = (-1)^r HM^r$ et

$$M^{r}(Hv) = H((-1)^{r}M^{r}v) = (-1)^{r}H(0) = 0.$$

Ainsi $Hv \in \ker(M^r)$ et $\ker(M^r)$ est stable par H.

Soit $v \in \ker(Q(M))$, donc Q(M)v = 0. On a $HQ(M)H^{-1} = Q(-M)$. Donc

$$Q(-M)(Hv) = (HQ(M)H^{-1})(Hv) = HQ(M)v = H(0) = 0.$$

On sait que $Q(X) = (-1)^{p+r}Q(-X)$. Donc $Q(M) = (-1)^{p+r}Q(-M)$ et

$$Q(M)(Hv) = (-1)^{p+r}Q(-M)(Hv) = (-1)^{p+r}0 = 0.$$

Ainsi $Hv \in \ker(Q(M))$ et $\ker(Q(M))$ est stable par H.

17) Nous allons appliquer le théorème de décomposition graduée. Comme $H^2 = I_n$, et :

$$HMH^{-1} = -M = e^{\frac{2i\pi}{2}}M$$

avec M nilpotente, on peut appliquer ce théorème avec N=2. Dans une même base convenable, les applications $X \mapsto MX$ et $X \mapsto HX$ ont respectivement pour matrices :

$$\operatorname{diag}(J_{r_1},\ldots,J_{r_s}), \quad \text{et} \quad \operatorname{diag}(D_{r_1,a_1},\ldots,D_{r_s,a_s}),$$

avec r_1, \ldots, r_s et $a_1, \ldots, a_s \in \{0, 1\}$ des entiers convenables. Les coefficients diagonaux sont une alternance de -1 et de 1 (commençant par -1 si $a_i = 1$, et par 1 si $a_i = 0$).

Pour obtenir la décomposition de l'énoncé, nous allons faire un changement de base qui regroupe les 1 et les -1. Pour alléger la rédaction, nous nous contenterons de réduire simultanément J_n et $D_{n,1}$ avec n un entier naturel non nul : nous indiquerons brièvement comment traiter le cas de J_n et $D_{n,0}$, puis conviendrons que la réduction des matrices diagonales par blocs en découle immédiatement.

Soit $B = (e_1, \ldots, e_n)$ la base canonique de \mathbb{C}^n . Supposons d'abord que n est pair, de la forme n = 2r avec r un entier non nul. Considérons la famille :

$$F = (e_2, \dots, e_{2r}, e_1, \dots, e_{2r-1}).$$

C'est une base de \mathbb{C}^n , puisque nous n'avons fait que permuter les vecteurs de B. On a, par définition de $D_{r,1}$:

$$\forall i \in \{1, \dots, r\}, \quad D_{n,1}(e_{2i}) = 1, \quad D_{n,1}(e_{2i-1}) = -1.$$

Si l'on note P la matrice de passage de B dans F on aura:

$$D_{n,1} = P \begin{pmatrix} I_r & 0_r \\ 0_r & -I_r \end{pmatrix} P^{-1}.$$

On a ici s = r (qui vérifie bien sûr $|r - s| \le 1$). De plus :

$$\forall i \in \{1, \dots, r\}, \quad J_n(e_{2i}) = \begin{cases} e_{2i+1} & \text{si } i < r, \\ 0 & \text{si } i = r, \end{cases} \quad J_n(e_{2i-1}) = e_{2i}.$$

La formule du changement de base donne donc :

$$J_n = P \begin{pmatrix} 0_r & B_0 \\ A_0 & 0_r \end{pmatrix} P^{-1},$$

avec:

$$A_0 = J_r, \quad B_0 = I_r :$$

D'où le résultat pour J_n et $D_{n,1}$ lorsque n est pair.

Supposons à présent que n est impair, de la forme n=2r+1 avec r entier naturel. On considère cette fois-ci la base :

$$F = (e_2, \dots, e_{2r}, e_1, \dots, e_{2r+1}).$$

Le même calcul donne :

$$D_{n,1} = P \begin{pmatrix} I_r & 0_{r,r+1} \\ 0_{r+1,r} & -I_{r+1} \end{pmatrix} P^{-1}.$$

De plus:

$$\forall i \in \{1, \dots, r\}, \quad J_n(e_{2i}) = e_{2i+1}, \quad \forall i \in \{1, \dots, r+1\}, \quad J_n(e_{2i-1}) = \begin{cases} e_{2i} & \text{si } i < r+1, \\ 0 & \text{si } i = r+1. \end{cases}$$

La formule du changement de base donne donc :

$$J_n = P \begin{pmatrix} 0_r & B_0 \\ A_0 & 0_{r+1} \end{pmatrix} P^{-1},$$

avec:

$$A_0 = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \end{pmatrix} \in M_{r+1,r}(\mathbb{C}), \quad B_0 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \in M_{r,r+1}(\mathbb{C}).$$

D'où le résultat en posant cette fois-ci s = r + 1.

On procède de la même manière $D_{n,0}$

18)a) On a:

$$M_2 = \begin{pmatrix} BA & 0_{m,n} \\ 0_{n,m} & AB \end{pmatrix},$$

donc:

$$\det(AB)\det(BA) = \det(M_2) \neq 0.$$

On en déduit que les matrices AB et BA sont inversibles et donc de rang maximal, n dans le premier cas et m dans le second.

Or:

$$\operatorname{rang}(AB) \leq \min(\operatorname{rang}(A), \operatorname{rang}(B)), \quad \operatorname{rang}(BA) \leq \min(\operatorname{rang}(A), \operatorname{rang}(B)).$$

Si par exemple n < m, alors A et B sont de rang au plus n, et donc la deuxième inégalité donne $m \le n$, ce qui est absurde. C'est la première inégalité qui fournit une contradiction si m < n, d'où l'égalité m = n.

Donc A et B sont inversibles puisque : $det(A) det(B) = det(AB) \neq 0$.

18)b) Cette question est laissée au lecteur