CONCOURS D'ADMISSION 2008

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Équations différentielles de Sturm-Liouville

Ce problème est consacré à l'étude d'une équation différentielle avec paramètre. On désigne par $C^{\infty}([0,1])$ l'espace des fonctions réelles de classe C^{∞} sur [0,1].

Première partie

Dans cette première partie, étant donné deux fonctions p et q de $C^{\infty}([0,1])$, on désigne par $A_{p,q}$ l'endomorphisme de $C^{\infty}([0,1])$ défini par

$$A_{p,q}(y) = y'' + py' + qy$$

et par $(D_{p,q})$ l'équation différentielle sur $[0,1]:A_{p,q}(y)=0$.

- 1. Soit y une solution non identiquement nulle de $(D_{p,q})$.
- 1.a) Montrer que les fonctions y et y' ne s'annulent pas simultanément.
- 1.b) Montrer que les zéros de y sont en nombre fini.
- 2. Soit y_1 et y_2 deux solutions linéairement indépendantes de $(D_{p,q})$; on suppose que y_1 admet au moins deux zéros et on note a et b deux zéros consécutifs.
- 2.a) Montrer que y_2 admet au moins un zéro dans l'intervalle ouvert]a,b[. [On pourra procéder par l'absurde et considérer le wronskien W de y_1 et y_2 .]
 - 2.b) La fonction y_2 peut-elle avoir plusieurs zéros dans]a, b[?]

Étant donné deux fonctions u et v de $C^{\infty}([0,1])$, u ne s'annulant en aucun point, on désigne par $B_{u,v}$ l'endomorphisme de $C^{\infty}([0,1])$ défini par

$$B_{u,v}(y) = (uy')' + vy$$

et par $(E_{u,v})$ l'équation différentielle sur $[0,1]:B_{u,v}(y)=0$.

3.a) Soit y_1 et y_2 deux solutions linéairement indépendantes de $(D_{p,q})$ et soit W leur wronskien. Vérifier la relation

$$y_1 B_{u,v}(y_2) - y_2 B_{u,v}(y_1) = (u' - up)W$$
.

- **3.b)** Montrer que, pour tout couple (p,q), il existe des couples (u,v) tels que Ker $A_{p,q} = \text{Ker } B_{u,v}$ et déterminer tous ces couples (u,v).
 - 4. On se donne trois fonctions u, v_1, v_2 de $C^{\infty}([0,1])$ et on suppose

$$u(x) > 0$$
 , $v_2(x) < v_1(x)$ pour tout $x \in [0, 1]$.

Pour i = 1, 2, on note y_i une solution non identiquement nulle de l'équation (E_{u,v_i}) ; on suppose que y_2 admet au moins deux zéros et on note a et b deux zéros consécutifs.

4.a) Vérifier la relation

$$[uy_1y_2']_a^b = \int_a^b \Big(v_1(x) - v_2(x)\Big)y_1(x)y_2(x) \ dx \ .$$

[On pourra considérer $\int_a^b \left(y_1 B_{u,v_2}(y_2) - y_2 B_{u,v_1}(y_1)\right) dx$.]

4.b) Montrer que y_1 admet au moins un zéro dans l'intervalle a, b. [On pourra procéder par l'absurde.]

Dans toute la suite du problème on note r une fonction de $C^{\infty}([0,1])$; pour tout nombre réel λ on considère l'équation différentielle sur [0,1]:

$$(D_{\lambda}) y'' + (\lambda - r)y = 0.$$

On note y_{λ} l'unique solution de (D_{λ}) satisfaisant $y_{\lambda}(0) = 0$, $y'_{\lambda}(0) = 1$, et E_{λ} l'espace vectoriel (éventuellement réduit à zéro) des solutions de (D_{λ}) satisfaisant y(0) = y(1) = 0; si cet espace n'est pas réduit à zéro, on dit que λ est valeur propre.

Deuxième partie

- **5.a)** Quelles sont les valeurs possibles de dim E_{λ} ?
- **5.b)** Démontrer l'équivalence des conditions $E_{\lambda} \neq \{0\}$ et $y_{\lambda}(1) = 0$.
- 6. Démontrer les assertions suivantes :
- 6.a) Toute valeur propre est supérieure ou égale à $\inf_{x \in [0,1]} r(x)$.
- 6.b) Si $y_1 \in E_{\lambda_1}$, $y_2 \in E_{\lambda_2}$ avec $\lambda_1 \neq \lambda_2$, alors $\int_0^1 y_1(x)y_2(x) \ dx = 0$.

Troisième partie

Dans les troisième et quatrième parties, on désigne par $N(\lambda)$ le nombre des zéros de la fonction y_{λ} dans [0,1] et on se propose d'étudier $N(\lambda)$ en lien avec les valeurs de $y_{\lambda}(1)$, ainsi que la répartition des valeurs propres.

- 7. Dans cette question on examine le cas où r=0 et $\lambda>0$. On désigne par E(a) la partie entière d'un nombre réel a.
 - 7.a) Calculer $y_{\lambda}(x)$ pour $x \in [0, 1]$.
 - 7.b) Calculer $N(\lambda)$.
 - 7.c) Préciser le comportement de $N(\lambda)$ au voisinage d'un point λ_0 .

On ne suppose plus r=0 ni $\lambda>0$. On admettra que la fonction de deux variables $(\lambda,x)\mapsto y_\lambda(x)$ est de classe C^∞ .

8. Dans cette question, on se propose de démontrer que, si $y_{\lambda_0}(1)$ est non nul, $N(\lambda)$ est constant dans un voisinage de λ_0 .

On désigne par $c_1, \ldots, c_n, \ n \geqslant 1$, les zéros de y_{λ_0} dans [0,1] avec

$$0 = c_1 < c_2 < \ldots < c_n < 1.$$

8.a) Montrer qu'il existe une suite strictement croissante $(\xi_j)_{0 \le j \le 2n}$ de nombres réels, possédant les propriétés suivantes :

- (i) $\xi_0 = 0$, $\xi_{2n} = 1$, $0 < \xi_1 < \xi_2$, $\xi_{2j-2} < c_j < \xi_{2j-1}$ pour $j = 2, \dots, n$;
- (ii) $(-1)^{j+1}y_{\lambda_0} > 0$ sur $[\xi_{2j-1}, \xi_{2j}], j = 1, \dots, n;$
- (iii) $(-1)^j y'_{\lambda_0} > 0$ sur $[\xi_{2j}, \xi_{2j+1}], j = 0, \dots, n-1$.
- 8.b) Dans cette question, on considère une fonction F de classe C^{∞} définie sur un ouvert contenant un rectangle compact $I \times J$ de \mathbf{R}^2 . Démontrer l'assertion suivante : pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que les conditions $s_1, s_2 \in I$ et $|s_1 s_2| < \delta$ impliquent

$$|F(s_1,t) - F(s_2,t)| < \varepsilon$$
 pour tout $t \in J$.

- 8.c) Montrer que, pour tout λ suffisamment voisin de λ_0 , y_{λ} a exactement un zéro dans chacun des intervalles $[\xi_{2j}, \, \xi_{2j+1}]$, mais n'en a aucun dans les intervalles $[\xi_{2j-1}, \, \xi_{2j}]$. Conclure.
 - 9. Montrer que, pour tout $\lambda \geqslant \rho = \sup_{x \in [0,1]} r(x)$, on a

$$N(\lambda) \geqslant E((\lambda - \rho)^{1/2}\pi^{-1})$$
.

[On pourra utiliser la question 4 et la question 7 en y remplaçant λ par un réel quelconque $\mu < \lambda - \rho$.]

10.a) Montrer que, si $y_{\lambda}(1)$ est non nul pour tout λ appartenant à un intervalle $I, N(\lambda)$ est constant dans I.

10.b) L'ensemble des valeurs propres est-il vide ou non vide? fini ou infini?

Quatrième partie

Dans cette quatrième partie, on étudie le comportement de $N(\lambda)$ au voisinage d'un point λ_0 tel que $y_{\lambda_0}(1)=0$. On écrira $y(\lambda,x)$ au lieu de $y_{\lambda}(x)$, et on rappelle que cette fonction de deux variables est de classe C^{∞} ; l'équation (D_{λ}) s'écrit donc :

(i)
$$\frac{\partial^2 y}{\partial x^2} + (\lambda - r)y = 0 \; .$$

11. Démontrer que la relation (i) entraîne les relations suivantes :

(ii)
$$\frac{\partial^3 y}{\partial x^2 \partial \lambda} + (\lambda - r) \frac{\partial y}{\partial \lambda} + y = 0$$

(iii)
$$\frac{\partial^2 y}{\partial x^2} \frac{\partial y}{\partial \lambda} - \frac{\partial^3 y}{\partial x^2 \partial \lambda} y - y^2 = 0$$

(iv)
$$\frac{\partial y}{\partial \lambda}(\lambda_0,1)\frac{\partial y}{\partial x}(\lambda_0,1) = \int_0^1 y(\lambda_0,x)^2 dx > 0.$$

12. Montrer qu'il existe un réel $\varepsilon>0$ ayant les propriétés suivantes :

(i) si
$$\lambda \in [\lambda_0 - \varepsilon, \lambda_0[$$
, on a $N(\lambda) = N(\lambda_0) - 1$;

(ii) si
$$\lambda \in [\lambda_0, \lambda_0 + \varepsilon]$$
, on a $N(\lambda) = N(\lambda_0)$.

13. Montrer qu'on peut écrire les valeurs propres comme une suite croissante infinie $\lambda_1 < \lambda_2 < \dots$, et exprimer $N(\lambda_n)$ en fonction de n.

X, première composition MP 2008

Corrigé rédigé par Denis Choimet

L'auteur remercie par avance les lecteurs qui voudront bien lui signaler les erreurs contenues dans ce corrigé.

Première partie

1.a) Fixons $a \in [0,1]$. La fonction identiquement nulle est solution de $(D_{p,q})$, et elle est nulle en a ainsi que sa dérivée. D'après le théorème de Cauchy-Lipschitz, une solution non identiquement nulle y de $(D_{p,q})$ ne peut vérifier les mêmes conditions initiales. Donc $(y(a), y'(a)) \neq (0,0)$ pour tout $a \in [0,1]$.

1.b) Soit a un zéro de y. D'après 1.a), $y'(a) \neq 0$, donc $y(x) \sim_{x \to a} y'(a)(x-a)$. Cela prouve que, dans un voisinage de a, y ne s'annule qu'en a, autrement dit que les zéros de y sont isolés.

Supposons un instant l'ensemble des zéros de y infini. On peut alors former une suite injective $(z_n)_{n\geq 0}$ de zéros de y. Comme [0,1] est compact, quitte à extraire, on peut supposer que cette suite converge vers $a\in [0,1]$. y étant continue en a, a est un zéro de y, qui n'est pas isolé : contradiction.

L'ensemble des zéros de y est fini

Remarque : l'argument peut se résumer ainsi : un espace métrique compact dont la topologie est discrète est fini.

2.a) On va éviter le raisonnement par l'absurde préconisé par le texte. Considérons le wronskien $W=y_1y_2'-y_1'y_2$ de y_1 et y_2 . Comme y_1 et y_2 sont des solutions indépendantes de $(D_{p,q})$, W ne s'annule pas sur [0,1], et est donc de signe constant d'après le théorème des valeurs intermédiaires. Pour la même raison, y_1 est de signe constant sur]a,b[; quitte à changer y_1 en $-y_1$, on peut supposer ce signe strictement positif, ce qui oblige $y_1'(a)>0$ et $y_1'(b)<0$. D'autre part,

$$W(a) = -y_1'(a)y_2(a)$$
 et $W(b) = -y_1'(b)y_2(b)$.

On déduit de tout cela que $y_2(a)y_2(b) < 0$.

 y_2 admet donc au moins un zéro dans]a,b[

2.b) Si jamais y_2 admettait deux zéros c et d, qu'on peut supposer consécutifs, dans]a,b[, d'après 2.a) y_1 admettrait un zéro dans $]c,d[\subset]a,b[$, ce qui est absurde. $\boxed{y_2}$ admet donc un unique zéro dans]a,b[.

¹Ces dérivées ne peuvent être nulles d'après 1.a)

3.a) On calcule, en tenant compte du fait que y_1 et y_2 sont solutions de $(D_{p,q})$:

$$y_1 B_{u,v}(y_2) - y_2 B_{u,v}(y_1) = y_1 (uy_2'' + u'y_2' + vy_2) - y_2 (uy_1'' + u'y_1' + vy_1)$$

$$= y_1 ((u' - pu)y_2' + (v - qu)y_2) - y_2 ((u' - pu)y_1' + (v - qu)y_1)$$

$$= (u' - pu)W.$$

3.b) Fixons $(p,q) \in C^{\infty}([0,1])^2$.

Supposons que $(u,v) \in C^{\infty}([0,1])^2$ vérifie $\ker B_{u,v} = \ker A_{p,q}$. Alors, avec les notations de 3.a), y_1 et y_2 sont éléments de $\ker B_{u,v}$, d'où, puisque W ne s'annule pas, u'-pu=0. D'autre part, comme $A_{p,q}(y_1)=B_{u,v}(y_1)=0$ et u ne s'annule pas, on a

$$y_1'' + py_1' + qy_1 = y_1'' + \frac{u'}{u}y_1' + \frac{v}{u}y_1 = 0,$$

d'où $\left(q-\frac{v}{u}\right)y_1=0$. Par conséquent, d'après 1.b), la fonction $q-\frac{v}{u}$ est nulle en dehors d'un nombre fini de points de [0,1], donc sur [0,1] par continuité. Finalement, v=qu.

Réciproquement, si u'-pu=0 et v=qu, alors, pour tout $y\in C^\infty([0,1])$, on a

$$B_{u,v}(y) = uy'' + u'y' + vy = u(y'' + py' + qy),$$

donc $\ker A_{p,q} = \ker B_{u,v}$ puisque u ne s'annule pas.

En définitive, les couples (u,v) pour les quels $\ker A_{p,q}=\ker B_{u,v}$ sont les couples

$$\left(x\mapsto \lambda \exp\left(\int_0^x p(t)dt\right), x\mapsto \lambda q(x)\exp\left(\int_0^x p(t)dt\right)\right), \ \lambda \ \text{d\'ecrivant } \mathbb{R}$$

4.a) Suivons l'indication du texte... D'une part, bien sûr,

$$\int_{a}^{b} (y_1 B_{u,v_2}(y_2) - y_2 B_{u,v_1}(y_1)) dx = 0.$$

D'autre part,

$$\int_{a}^{b} (y_{1}B_{u,v}(y_{2}) - y_{2}B_{u,v}(y_{1}))dx = \int_{a}^{b} (y_{1}(uy_{2}'' + u'y_{2}' + v_{2}y_{2}) - y_{2}(uy_{1}'' + u'y_{1}' + v_{1}y_{1})) dx
= \int_{a}^{b} (v_{2} - v_{1})y_{1}y_{2} dx + \int_{a}^{b} (u(y_{1}y_{2}'' - y_{2}y_{1}') + u'(y_{1}y_{2}' - y_{2}y_{1}')) dx
= \int_{a}^{b} (v_{2} - v_{1})y_{1}y_{2} dx + \int_{a}^{b} (u(y_{1}y_{2}' - y_{2}y_{1}'))' dx
= \int_{a}^{b} (v_{2} - v_{1})y_{1}y_{2} dx + [u(y_{1}y_{2}' - y_{2}y_{1}')]_{a}^{b}
= \int_{a}^{b} (v_{2} - v_{1})y_{1}y_{2} dx + [u(y_{1}y_{2}' - y_{2}y_{1}')]_{a}^{b}$$

puisque $y_2(a) = y_2(b) = 0$. Finalement,

$$\left[[uy_1y_2']_a^b = \int_a^b (v_1(x) - v_2(x))y_1(x)y_2(x)dx \right]$$

4.b) Supposons un instant que y_1 ne s'annule pas dans]a,b[. Quitte à changer y_1 et y_2 en leurs opposés (ce qui est sans importance pour étudier leurs zéros), on peut supposer ces fonctions strictement positives dans]a,b[. Cela impose notamment $y_2'(a) > 0$, $y_2'(b) < 0$. Alors, la fonction $(v_1 - v_2)y_1y_2$ étant continue, positive et non identiquement nulle, on a

$$\int_{a}^{b} (v_1(x) - v_2(x))y_1(x)y_2(x)dx > 0$$

d'où, d'après 4.a),

$$\underbrace{u(b)y_2'(b)y_1(b)}_{<0} - \underbrace{u(a)y_2'(a)y_1(a)}_{>0} > 0,$$

ce qui est absurde. y_1 admet donc au moins un zéro dans]a,b[

Deuxième partie

5.a) L'ensemble des solutions de (D_{λ}) est un espace vectoriel de dimension 2 contenant strictement E_{λ} (puisque (D_{λ}) admet des solutions non nulles en 0), donc $\overline{\dim E_{\lambda} \in \{0,1\}}$

5.b) Si $y_{\lambda}(1)=0$, y_{λ} est un élément non nul de E_{λ} . Réciproquement, supposons que $E_{\lambda}\neq\{0\}$. D'après 5.a), E_{λ} est alors une droite vectorielle. D'autre part, si nous notons S_{λ} l'espace vectoriel de dimension 2 des solutions de (D_{λ}) , l'application

$$\delta_0: S_{\lambda} \to \mathbb{R}, y \mapsto y(0)$$

est une forme linéaire non nulle. Son noyau est donc une droite vectorielle contenant E_{λ} . Pour des raisons de dimension, $E_{\lambda} = \ker \delta_0$. Or, $y_{\lambda} \in \ker \delta_0$, donc $y_{\lambda} \in E_{\lambda}$, autrement dit $y_{\lambda}(1) = 0$. On a donc montré que

$$E_{\lambda} \neq \{0\} \Leftrightarrow y_{\lambda}(1) = 0$$

6.a) Supposons que λ soit une valeur propre. D'après 5.b), $y_{\lambda} \in E_{\lambda}$, et comme $y''_{\lambda} = (r - \lambda)y_{\lambda}$, on a aussi

$$y_{\lambda}y_{\lambda}^{"}=(r-\lambda)y_{\lambda}^{2},$$

done

$$\int_0^1 (r(x) - \lambda) y_{\lambda}(x)^2 dx = \int_0^1 y_{\lambda}(x) y_{\lambda}''(x) dx$$

$$= [y_{\lambda}(x) y_{\lambda}'(x)]_0^1 - \int_0^1 y_{\lambda}'(x)^2 dx$$

$$= -\int_0^1 y_{\lambda}'(x)^2 dx \text{ puisque } y_{\lambda}(0) = y_{\lambda}(1) = 0$$

< 0 puisque $y_{\lambda}^{\prime 2}$ est continue, positive et non identiquement nulle.

La fonction $r-\lambda$ ne peut donc être positive. Par suite, il existe $x\in[0,1]$ tel que $r(x)<\lambda$; autrement dit, $\inf_{x\in[0,1]}r(x)<\lambda$, ce qui est un peu plus précis que ce que propose le texte.

6.b) Soit $y_1 \in E_{\lambda_1}$ et $y_2 \in E_{\lambda_2}$, avec $\lambda_1 \neq \lambda_2$. Parachutons² l'opérateur

$$\Phi: E_{\lambda} \to C^{\infty}([0,1]), y \mapsto y'' - ry.$$

On a alors

$$\begin{split} \int_0^1 \Phi(y_1)(x) y_2(x) dx &= \int_0^1 y_1''(x) y_2(x) dx - \int_0^1 r(x) y_1(x) y_2(x) \\ &= \underbrace{\left[y_1'(x) y_2(x) \right]_0^1}_{=0 \text{ puisque } y_2 \in E_{\lambda}} - \int_0^1 y_1'(x) y_2'(x) dx - \int_0^1 r(x) y_1(x) y_2(x) \\ &= \underbrace{\left[y_1(x) y_2'(x) \right]_0^1}_{=0 \text{ puisque } y_1 \in E_{\lambda}} + \int_0^1 y_1(x) y_2''(x) dx - \int_0^1 r(x) y_1(x) y_2(x) \\ &= \int_0^1 y_1(x) \Phi(y_2)(x) dx. \end{split}$$

On est en présence d'une sorte d'opérateur autoadjoint - mais Φ n'est pas un endomorphisme; on ne sera donc pas surpris que les « sous-espaces propres » de Φ soient deux à deux orthogonaux. Tenant compte du fait que $\Phi(y_1) = -\lambda_1 y_1$ et $\Phi(y_2) = -\lambda_2 y_2$, cela donne

$$(\lambda_2 - \lambda_1) \int_0^1 y_1(x) y_2(x) dx = 0$$

d'où, puisque $\lambda_1 \neq \lambda_2$,

$$\int_0^1 y_1(x)y_2(x)dx = 0$$

Troisième partie

7.a) Immédiatement :
$$y_{\lambda}(x) = \frac{\sin(x\sqrt{\lambda})}{\sqrt{\lambda}}$$
 pour tout $x \in [0,1]$

7.b) Les zéros de
$$y_{\lambda}$$
 sont donc les $\frac{k\pi}{\sqrt{\lambda}}$, $0 \le k \le \left[\frac{\sqrt{\lambda}}{\pi}\right]$. Par suite, $N(\lambda) = 1 + \left[\frac{\sqrt{\lambda}}{\pi}\right]$

7.c) La fonction $\mathbb{R}_+^* \to \mathbb{N}, \lambda \mapsto N(\lambda)$ est donc constante au voisinage de tout $\lambda_0 \in \mathbb{R}_+^*$ qui n'est pas de la forme $k^2\pi^2$, $k \in \mathbb{N}^*$. En revanche, cette fonction est discontinue (à gauche) en les $k^2\pi^2$.

Remarque : les $k^2\pi^2, k\in\mathbb{N}^*$, sont précisément les valeurs propres strictement positives de (D_{λ}) .

 $^{^2}$ Pas tant que cela, en fait : on s'arrange pour que y_1 et y_2 soient des "vecteurs propres" de Φ .

8.a) La fonction y_{λ} ne s'annule pas sur $]c_1, c_2[$. Comme $y_{\lambda}(0) = 0$ et $y'_{\lambda}(0) > 0$, y_{λ} est strictement positive sur $]c_1, c_2[$. De plus, comme $y'_{\lambda}(0) > 0$ et y'_{λ} est une fonction continue, y'_{λ} reste strictement positive dans un voisinage $[\xi_0, \xi_1]$ de c_1 , avec $\xi_0 = c_1$ et $\xi_1 < c_2$.

D'autre part, si jamais $y_\lambda'(c_2)$ (qui est certainement non nul d'après Cauchy-Lipschitz) était strictement positif, la fonction y_λ serait strictement négative dans un voisinage à gauche de c_2 , ce qui est absurde, d'où $y_\lambda'(c_2) < 0$. De même que précédemment, y_λ' reste donc strictement négative dans un voisinage $[\xi_2, \xi_3]$ de c_2 , avec $\xi_1 < \xi_2 < c_2 < \xi_3 < c_3$.

Bien entendu, y_{λ} est strictement positive sur $[\xi_1, \xi_2]$.

Notons enfin que comme $y_{\lambda}(c_2) = 0$, $y'_{\lambda}(c_2) < 0$ et y_{λ} ne s'annule pas sur $]c_2, c_3[$, y_{λ} est strictement négative sur $]c_2, c_3[$.

La construction des ξ_j se poursuit sans encombre, grâce à une récurrence dont la rédaction ne ferait qu'obscurcir les choses. L'indispensable dessin est laissé aux soins du lecteur.

- 8.b) Comme $I \times J$ est compact, F est uniformément continue sur $I \times J$. Le résultat en découle immédiatement.
- 8.c) Avertissement : tous les intervalles compacts envisagés dans cette question sont d'intérieur non vide.

Fixons tout d'abord $j \in [1, n-1]$. D'une part, comme $y_{\lambda_0}(\xi_{2j})y_{\lambda_0}(\xi_{2j+1}) < 0$ et les fonctions $\lambda \mapsto y_{\lambda}(\xi_k)$ sont continues (fait admis par l'énoncé), on aura également $y_{\lambda}(\xi_{2j})y_{\lambda}(\xi_{2j+1}) < 0$ pour λ appartenant à un intervalle compact I_j centré en λ_0 .

D'autre part, la fonction $(-1)^j y'_{\lambda_0}$ est continue et strictement positive sur le compact $[\xi_{2j}, \xi_{2j+1}]$; il existe donc un réel strictement positif ε tel que $(-1)^j y'_{\lambda_0}(x) \ge 2\varepsilon$ pour tout $x \in [\xi_{2j}, \xi_{2j+1}]$. Par ailleurs, la fonction $(\lambda, x) \mapsto (-1)^j y'_{\lambda}(x)$ est continue sur $\mathbb{R} \times [\xi_{2j}, \xi_{2j+1}]$. La question 8.b) fournit donc un intervalle compact I'_j centré en λ_0 tel que, pour $(\lambda, x) \in I'_j \times [\xi_{2j}, \xi_{2j+1}]$, l'on ait

$$|(-1)^j y'_{\lambda}(x) - (-1)^j y'_{\lambda_0}(x)| \le \varepsilon.$$

Dès lors, si $(\lambda, x) \in I'_j \times [\xi_{2j}, \xi_{2j+1}]$, on a

$$(-1)^{j}y'_{\lambda}(x) \ge (-1)^{j}y'_{\lambda_{0}}(x) - |(-1)^{j}y'_{\lambda}(x) - (-1)^{j}y'_{\lambda_{0}}(x)| \ge \varepsilon.$$

En particuler, si $\lambda \in I'_j$, la fonction $(-1)^j y_\lambda$ est strictement croissante sur $[\xi_{2j}, \xi_{2j+1}]$.

Les deux phrases en italique qui précèdent prouvent que si $\lambda \in I_j \cap I'_j$, y_λ admet exactement un zéro dans $[\xi_{2j}, \xi_{2j+1}]$.

Le même argument fonctionne si j=0, et fournit un intervalle compact I_0 centré en λ_0 tel que, si $\lambda \in I_0$, la fonction y_{λ} est strictement croissante sur

 $[\xi_0,\xi_1].$ Comme $y_\lambda(0)=0,$ cela prouve que si $\lambda\in I_0,$ $\xi_0=0$ est l'unique zéro de y_λ dans $[\xi_0,\xi_1].$

En ce qui concerne les segments $[\xi_{2j-1},\xi_{2j}]$, l'argument est similaire : ayant fixé $j\in [\![1,n]\!]$, il existe un réel strictement positif ε tel que $(-1)^{j+1}y_{\lambda_0}\geq 2\varepsilon$ sur $[\xi_{2j-1},\xi_{2j}]$, ainsi qu'un intervalle compact I''_j centré en λ_0 tel que, pour $(\lambda,x)\in I''_j\times [\xi_{2j-1},\xi_{2j}]$, l'on ait

$$|(-1)^{j+1}y_{\lambda}(x) - (-1)^{j+1}y_{\lambda_0}(x)| \le \varepsilon.$$

Alors, si $(\lambda, x) \in I_j'' \times [\xi_{2j-1}, \xi_{2j}]$, on aura $(-1)^{j+1}y_{\lambda}(x) \geq \varepsilon$. En particulier, si $\lambda \in I_j''$, la fonction $(-1)^{j+1}y_{\lambda}$ n'admet aucun zéro dans $[\xi_{2j-1}, \xi_{2j}]$.

Pour conclure, il reste à noter I l'intersection (finie) des I_j , I'_j et I''_j : c'est un intervalle compact centré en λ_0 ; ce qui précède montre que pour tout $\lambda \in I$, y_λ admet exactement un zéro dans chaque $[\xi_{2j}, \xi_{2j+1}]$ et aucun dans chaque $[\xi_{2j-1}, \xi_{2j}]$.

Le décompte des zéros est alors facile : si $\lambda \in I$, $N(\lambda) = n = N(\lambda_0)$

9. Dans cette question, on fixe un réel λ tel que $\lambda \geq \rho = \sup_{x \in [0,1]} r(x)$. On peut bien sûr supposer que $\lambda > \rho$, sinon le résultat à montrer est évident, ce qui permet de fixer un réel μ tel que $0 < \mu < \lambda - \rho$, et l'indication de l'énoncé nous conduit à envisager les deux équations différentielles

$$y'' + (\lambda - r)y = 0 (D_{\lambda})$$

et

$$y'' + \mu y = 0 \tag{D'_{\mu}}$$

Les hypothèses de la question 4. sont alors vérifiées, avec u(x)=1, $v_1(x)=\lambda-r(x)$ et $v_2(x)=\mu$. Dans ce qui suit, nous noterons N_μ le nombre de zéros dans [0,1] de la solution y de (D'_μ) telle que y(0)=0 et y'(0)=1. D'après la question 7.b),

$$N_{\mu} = 1 + \left[\frac{\sqrt{\mu}}{\pi} \right],$$

et d'après la question 4.b),

$$N(\lambda) \ge N_{\mu} - 1$$
,

puisque si c et d sont deux zéros consécutifs de y, y_{λ} admet un zéro dans]c, d[. En réalité, comme 0 est par définition un zéro de y_{λ} , nous avons même un peu mieux :

$$N(\lambda) \ge N_{\mu} = 1 + \left[\frac{\sqrt{\mu}}{\pi}\right],$$

et ce pour tout $\mu < \lambda - \rho$. Reste à faire tendre μ vers $\lambda - \rho$ dans cette inégalité. Or,

$$\left[\frac{\sqrt{\mu}}{\pi}\right]_{\mu \nearrow \lambda - \rho} \left\{ \begin{bmatrix} \frac{\sqrt{\lambda - \rho}}{\pi} \\ \frac{\sqrt{\lambda - \rho}}{\pi} \end{bmatrix} \text{ si } \frac{\sqrt{\lambda - \rho}}{\pi} \notin \mathbb{N}, \\ \left[\frac{\sqrt{\lambda - \rho}}{\pi}\right] - 1 \text{ sinon.} \end{bmatrix}$$

Dans tous les cas,

$$N(\lambda) \ge \left[\frac{\sqrt{\lambda - \rho}}{\pi}\right]$$

10.a) Supposons $y_{\lambda}(1) \neq 0$ pour tout λ appartenant à un intervalle I. Fixons $\lambda_0 \in I$, et posons

 $E = \{\lambda \in I/N(\lambda) = N(\lambda_0)\}.$

D'après la question 8.c), la fonction N est localement constante sur I. Elle est donc par le fait même continue sur I, de sorte que E est un fermé de I. D'autre part, pour la même raison, E est un ouvert de I, non vide de surcroît. Comme I est connexe par arcs, E = I et N est constante sur I.

10.b) L'inégalité de la question 9. montre que

$$N(\lambda) \underset{\lambda \to +\infty}{\longrightarrow} +\infty.$$

La fonction N ne peut donc être constante sur \mathbb{R} . D'après 10.a), il existe donc $\lambda \in \mathbb{R}$ tel que $y_{\lambda}(1) = 0$. D'après 5.b), λ est alors valeur propre : l'ensemble des valeurs propres est donc non vide. Si jamais cet ensemble était fini, on aurait alors $y_{\lambda}(1) \neq 0$ pour $\lambda \in \mathbb{R}$ assez grand, donc (question 10.a) N serait constante sur un voisinage de $+\infty$, ce que la question 9. exclut. Finalement, l'ensemble des valeurs propres est infini (et non majoré).

Quatrième partie

11. Dérivons (i) par rapport à λ . Cela donne (le théorème de Schwarz justifiant l'échange des dérivations) :

$$\frac{\partial^3 y}{\partial x^2 \partial \lambda} + (\lambda - r) \frac{\partial y}{\partial \lambda} + y = 0.$$
 (ii)

Ensuite, en utilisant (ii):

$$\frac{\partial^2 y}{\partial x^2} \frac{\partial y}{\partial \lambda} - \frac{\partial^3 y}{\partial x^2 \partial \lambda} y - y^2 = -(\lambda - r) y \frac{\partial y}{\partial \lambda} + \left((\lambda - r) \frac{\partial y}{\partial \lambda} + y \right) y - y^2$$

d'où

$$\frac{\partial^2 y}{\partial x^2} \frac{\partial y}{\partial \lambda} - \frac{\partial^3 y}{\partial x^2 \partial \lambda} y - y^2 = 0.$$
 (iii)

Fixons $\lambda_0 \in \mathbb{R}$ tel que $y_{\lambda_0}(1) = 0$. On a alors, grâce à (iii) et deux intégrations par parties :

$$\begin{split} & \int_0^1 y(\lambda_0,x)^2 dx &= \int_0^1 \frac{\partial^2 y}{\partial x^2} (\lambda_0,x) \frac{\partial y}{\partial \lambda} (\lambda_0,x) dx - \int_0^1 \frac{\partial^3 y}{\partial x^2 \partial \lambda} (\lambda_0,x) y(\lambda_0,x) dx \\ &= \left[\frac{\partial y}{\partial x} (\lambda_0,x) \frac{\partial y}{\partial \lambda} (\lambda_0,x) \right]_{x=0}^{x=1} - \int_0^1 \frac{\partial y}{\partial x} (\lambda_0,x) \frac{\partial^2 y}{\partial x \partial \lambda} (\lambda_0,x) dx \\ & - \left[\frac{\partial^2 y}{\partial x \partial \lambda} (\lambda_0,x) y(\lambda_0,x) \right]_{x=0}^{x=1} + \int_0^1 \frac{\partial^2 y}{\partial x \partial \lambda} (\lambda_0,x) \frac{\partial y}{\partial x} (\lambda_0,x) dx \\ &= \frac{\partial y}{\partial x} (\lambda_0,1) \frac{\partial y}{\partial \lambda} (\lambda_0,1) - \frac{\partial y}{\partial x} (\lambda_0,0) \frac{\partial y}{\partial \lambda} (\lambda_0,0) \end{split}$$

puisque $y(\lambda_0,0)=y(\lambda_0,1)=0.$ D'autre part, la fonction $\lambda\mapsto y(\lambda,0)=y_\lambda(0)$ est indentiquement nulle. Par suite, $\frac{\partial y}{\partial \lambda}(\lambda_0, 0) = 0$. En définitive,

$$\int_0^1 y(\lambda_0, x)^2 dx = \frac{\partial y}{\partial x}(\lambda_0, 1) \frac{\partial y}{\partial \lambda}(\lambda_0, 1).$$
 (iv)

Comme la fonction y_{λ_0} est continue sur [0,1] et non identiquement nulle, la dernière intégrale écrite est strictement positive.

12. Pour rédiger cette question de façon compréhensible, il est souhaitable de distinguer deux cas, selon la parité de $N(\lambda_0)$. Supposons dans un premier temps cet entier impair.Rappelons que les zéros de y_{λ_0} sont notés

$$1 = c_1 < c_2 < \dots < c_{N(\lambda_0)-1} < c_{N(\lambda_0)} = 1.$$

et que, en dehors de c_1 et $c_{N(\lambda_0)}$, ils sont tous avec changement de signe. y_{λ_0} est donc strictement négative sur $]c_{N(\lambda_0)-1},c_{N(\lambda_0)}[$, d'où

$$y'_{\lambda_0}(1) = \frac{\partial y}{\partial x}(\lambda_0, 1) > 0.$$

D'après (iv),

$$\frac{\partial y}{\partial \lambda}(\lambda_0, 1) > 0.$$

À cause de la continuité de $(\lambda,x)\mapsto y(\lambda,x)$ et de toutes ses dérivées partielles, il existe un intervalle compact centré en λ_0 , ainsi que $\xi\in]c_{N(\lambda_0)-1},c_{N(\lambda_0)}[$ vérifiant les conditions suivantes :

- $-\frac{\partial y}{\partial \lambda}(\lambda,x)>0 \text{ pour } (\lambda,x)\in I\times [\xi,1],$ $-y_{\lambda} \text{ croît strictement sur } [\xi,1] \text{ pour chaque } \lambda\in I \text{ (argument détaillé en }$
- $-y_{\lambda}(\xi) < 0$ pour $\lambda \in I$ (car si ξ est quelconque dans $]c_{N(\lambda_0)-1}, c_{N(\lambda_0)}[$, $y_{\lambda_0}(\xi) < 0$).

De plus, quitte à rétrécir I, on peut supposer de plus (cf. 8.c) que si $\lambda \in I$, y_{λ} admet exactement $N(\lambda_0) - 1$ zéros dans $[0, \xi]$.

Notons que la première condition assure la stricte croissance sur I de la fonction $\lambda \mapsto y(\lambda,x)$ pour chaque $x \in [\xi,1].$ Dès lors, si $\lambda \in I$ est tel que $\lambda < \lambda_0,$ alors

$$y_{\lambda}(1) < y_{\lambda_0}(1) = 0.$$

La fonction y_{λ} n'admet donc auc un zéro dans $[\xi,1]$, d'où $N(\lambda)=N(\lambda_0)-1$

À présent, si $\lambda \in I$ vérifie $\lambda > \lambda_0$, on a

$$\begin{cases} y_{\lambda}(\xi) < 0, \\ y_{\lambda}(1) > y_{\lambda_0}(1) = 0. \end{cases}$$

 y_{λ} admet donc un unique zéro dans $[\xi, 1]$, ce qui prouve que $N(\lambda) = N(\lambda_0)$

Si $N(\lambda_0)$ est pair, les choses fonctionnent de façon analogue, sauf que cette fois $\frac{\partial y}{\partial \lambda}(\lambda_0,1)<0$: lorsque λ croît dans un voisinage de λ_0 , le graphe de y_λ « descend » au lieu de « monter » comme ci-dessus.

13. À ce stade, on dispose des informations suivantes sur l'ensemble Σ des valeurs propres:

– Σ est infini, non majoré (10.b) et minoré (6.a),

– les points de Σ sont isolés : si $\lambda_0 \in \Sigma$, il existe $\varepsilon > 0$ tel que, si $\lambda \in$ $[\lambda_0-\varepsilon,\lambda_0+\varepsilon]\setminus\{\lambda_0\},\,y_\lambda(1)\neq 0\;(\text{ct donc }\lambda\not\in\Sigma):\text{cela résulte de la stricte}$ monotonie au voisinage de λ_0 de la fonction $\lambda \mapsto y(\lambda, 1)$ (cf. question 12). En particulier (cf. 1.b) : tout intervalle compact de $\mathbb R$ rencontre Σ selon

Cela devrait suffire pour écrire les valeurs propres sous la forme d'une suite strictement croissante

$$\lambda_1 < \lambda_2 < \cdots$$

et tendant vers $+\infty$. D'après 10.a), la fonction N est constante sur] $-\infty, \lambda_1$ [et sur chaque $]\lambda_i, \lambda_{i+1}[$, et d'après 12, $N(\lambda_{i+1}) = N(\lambda_i) + 1$ pour $i \geq 1$. Il nous reste donc à calculer $N(\lambda_1)$. Bien sûr, $N(\lambda_1) \geq 2$ puisque 0 et 1 sont zéros de y_{λ_1} . Supposons un instant que $N(\lambda_1)>2$; alors $N(\lambda)>1$ pour tout $\lambda \in]-\infty, \lambda_1[$ (10.a et 12 à nouveau). Nous allons aboutir à une absurdité en réutilisant l'argument d'entrelacement des zéros de la question 4, ainsi que des solutions faiblement oscillantes de (D_{λ}) (i.e. avec un λ très négatif). De façon précise, considérons des équations différentielles (D_{λ}) et

$$y'' - y = 0. (D'_{-1})$$

La fonction $x \mapsto \sinh x$ est bien sûr solution de (D'_{-1}) . Choisissons alors $\lambda \in \mathbb{R}$ tel que $\lambda < \lambda_1$ et $\lambda - r(x) < -1$ pour tout $x \in [0,1]$. On a déjà indiqué que y_{λ} possède au moins deux zéros dans [0, 1]. Si c et d sont deux zéros consécutifs de y_{λ} , la fonction sinh admet un zéro dans $]c,d[\subset]0,1[$, ce qui est évidemment absurde. On a donc montré que $N(\lambda_1)=2$, et donc que

$$N(\lambda_n) = n+1$$
 pour tout $n \ge 1$