Introduction et Notations Premières techniques de cryptographie Crypatge asymétrique et RSA Problème du Logarithme Discret Test de Primalités

Techniques de cryptographie

Azzouzi Hamza -25614

2021/2022

Introduction

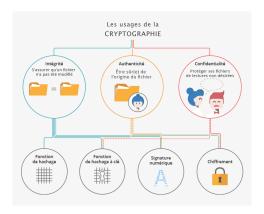


Figure -

Table de matière

- Introduction et Notations
- 2 Premières techniques de cryptographie
- 3 Crypatge asymétrique et RSA
- Problème du Logarithme Discret
- Test de Primalités

Quelques notations

$$\begin{array}{ccc} & & {\bf Eve} \\ ? & ? \\ {\bf Bob} & \stackrel{c}{\longrightarrow} & {\bf Alice} \\ m \stackrel{C_{k_A}}{\longrightarrow} c & c \stackrel{D_{l_A}}{\longrightarrow} m \end{array}$$

Protocole.

- M ensemble des messages clairs
- C ensemble des messages cryptés
- K ensemble des clés
- $C_k : \mathcal{M} \to \mathcal{C}$ fonction de cryptage
- D_l: C → A fonction de décryptage

Méthode César

• Elle consiste à créer un chiffrage de 3 lettres

Figure – L'alphabet dans le chiffrage de César

Exemple

SALUT → VDOYX

Au delà de la méthode César

- On peut faire correspondre chaque lettre à une autre (26! possibilités)
- Technique facile à déchiffrer (fréquence des lettres)

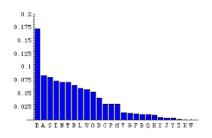


Figure – fréquence des lettres en français

La méthode XOR

Le principe du XOR (ou exclusif) est le suivant : Pour $x,y \in \{0,1\}^2$

$$x \oplus y = \begin{cases} : & 0 & \text{si } x = y \\ : & 1 & \text{sinon} \end{cases}$$

On peut alors crypter un message en utilisant comme clé un nombre de bits.

$$C_k(m) = k \oplus m$$

$$D_k(c) = k \oplus c$$

Exemple de la méthode XOR

- En prenant k = 1011 et m = 1010
- Message chiffré :

$$C_k(m) = 1011 \oplus 1010 = [0 \oplus 1] [0 \oplus 1] [1 \oplus 1] [1 \oplus 0] = 0001$$

• Message déchiffré :

$$D_k(c) = 0001 \oplus 1011 = 1010$$

Principe du cryptage asymétrique

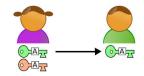


Figure – clé publique et privée

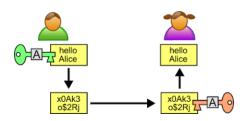


Figure – chiffrage et déchiffrage

Fonction indicatrice d'Euler

- $\forall p \in \mathbb{N}^*$, p est premier ssi $\varphi(p) = p 1$
- si p et q sont deux entiers premiers entre eux alors : $\varphi(pq) = \varphi(p)\varphi(q)$
- on peut montrer que pour $n \in \mathbb{N}$ fixé :

$$\forall x \in (\mathsf{Z}/\mathsf{n}\mathsf{Z})^*, x^{\varphi(n)} \equiv 1 [n]$$

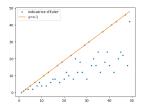


Figure – La fonction indicatrice d'Euler

Principe de La RSA

La fonction indicatrice d'Euler est la base de la cryptographie par la méthode de RSA dont le principe est le suivant :

- On choisit un grand nombre n = pq(où p et q sont deux grands nombres premiers), et un nombre r
- L'application de chiffrement est :

$$c = C(m) = m^r \mod n$$

• L'application de déchiffrement est :

$$D(m) = c^s \mod n$$

De sorte que : $rs \equiv 1 [\varphi(n)]$

Principe de la RSA

- Le calcul des fonctions E et D se fait rapidement si on connaît r et s grâce à l'algorithme des calcul rapides des puissances.
- Le nombre s n'est connu que par le propriétaire.
- La RSA permet de signer le message puisque le nombre s caractérise la personne qui a chiffrée le message.

Figure – Principe de La RSA

Exemple d'utilisation de RSA

- On utilise p = 157 q = 167 r = 5
- On trouve alors que n = 26219, $\varphi(n) = 25896$ et s = 20717
- Je chiffrerai "SALUT"
- On commence par transformer notre message en code ASCII

Dec Hex	Oct	Chr	Dec H	ex O	t HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chi
0.0		NULL	32.2		0	Space	64			8:#064;	0		60		8;#096;	
11		Start of Header	33 2	1 04	1 !	1	65			8:#065;	A		61		8/#097;	a
2.2	002	Start of Text	34 2	2 04	2 8:#034:		66		102	8:#066:	В		62	142	84098	ь
3 3		End of Text	35 2	3 04	3 #		67			C	C		63		8/#099;	c
4.4		End of Transmission	36 2		4 \$	S	68			8:#068;	D	100			d	d
5.5		Enquiry	37 2	5 04	5 %	%	69		105	E	E	101			e	e
6 6		Acknowledgment	38 2		6 &	&		46		8:#070;	F	102			f	f
7.7	007		39 2		7 '		71			G	G	103			g	q
88		Backspace	40 2		0 ((72			H	H	104			8:#104;	ĥ
99		Horizontal Tab	41.2		1))	73			I	I	105			8:#105;	1
10 A		Line feed	42 2		2 8:#042;		74			8:#074;	J	106			8:#106;	j.
11 B	013	Vertical Tab	43 2	B 05	3 +:	+	75	4B	113	8/#075:	K	107	6B	153	8/#107:	î.
12 C	014	Form feed	44.2	C 05	4 8/#044:		76	4C	114	8#076:	ï.	108	6C	154	8/#108:	ï
13 D	015	Carriage return	45 2	D 05	5 -:		77	4D	115	8#077:	M	109	6D	155	8#109:	m
14 E	016	Shift Out	46.2	E 05	6 8/4046:		78	4E	116	8/#078:	N	110	6E	156	8/#110:	n
15 F	017	Shift In	47.2	F 05	7 8:#047:	/	79		117	8/#079:	0	111	6F	157	8#111:	0
16 10	020	Data Link Escape	48 3	0 06	0 8/#048:	0	80	50	120	8/4080:	P	112	70	160	8#112:	D
17 11	021	Device Control 1	49 3	1 06	1 1:	1	81	51	121	Q:	0	113	71	161	q:	à
18 12	022	Device Control 2	50 3	2 06	2 8:#050:	2	82	52	122	R:	R	114	72	162	8/#114:	ř.
19 13	023	Device Control 3	51 3	3 06	3 3:	3	83	53	123	S:	S	115	73	163	8:#115:	5
20 14	024	Device Control 4	52 3	4 06	4 4:	4	84	54	124	T:	T	116	74	164	8:#116:	t
21 15	025	Negative Ack.	53 3	5 06	5 5:	5	85	55	125	8:#085:	Ù	117	75	165	8:#117:	u
22 16	026	Synchronous idle	54 3	6 06	6 6:	6	86	56	126	8:#086:	v	118	76	166	8/#118:	v
23 17	027	End of Trans. Block	55.3	7 06	7 8#055:	7	87	57	127	8/#087:	w	119	77	167	8/#119:	w
24 18	030	Cancel	56 3	8 07	0.8/4056:	8	88	58	130	8/4088	×	120	78	170	8/#120:	×
25 19	031	End of Medium	57 3	9 07	1 9:	9	89	59	131	8#089:	Ÿ	121	79	171	8/#121:	v
26 1A	032	Substitute	58 3	A 07	2.8/#058		90	SA	132	8//090:	ż	122	7A	172	8/#122:	ź
27 1B	033	Escape	59 3	B 07	3 ;:		91	SR		8#091:	ī	123	7R		8/#123:	ī
28 1C		File Separator	60 3		4 <:	'<	92			8/1092:	i .	124			8:#124:	î.
29 1D		Group Separator	61 3		5 =:			5D]:	î .	125	70		8/#125:	1
30 1E	036	Record Separator	62 3		6 >:		94			8:#094:	Ά.	126			8:#126:	-
31 1F		Unit Separator	63 3		7 ?:		95			8#095		127			8:#127:	De

Figure - code ASCII

Exemple d'utilisation de RSA

Lettre	S	А	L	U	Т	
m ^r mod n	83 ⁵ modn	65 ⁵ modn	76 ⁵ modn	85 ⁵ modn	84 ⁵ modn	
Message chiffré	2959	21218	16981	11755	5391	

Ainsi le message envoyé serait "02959 21218 16981 05391".

Pour déchiffrer :

Message chiffré	2959	21218	16981	11755	5391
c ^r mod n	2959 ²⁰⁷¹⁷	2128 ²⁰⁷¹⁷	16981 ²⁰⁷¹⁷	11755 ²⁰⁷¹⁷	5391 ²⁰⁷¹⁷
Message déchiffré	83	65	76	85	84

On retrouve alors le message envoyé.

Sécurité du RSA

- L'algorithme le plus rapide pour factoriser un nombre se fait en $\mathcal{O}(e^{\sqrt{\ln(n)\ln(\ln(n))}})$
- On suppose que l'ordinateur prend environ une microseconde à chaque opération

Longueur	Nb d'opérations	Durée
75	$9.0.10^{12}$	74 années
200	1.2 .10 ²³	3.8 .10 ⁹ années
500	1.3 .10 ³⁹	4.2 .10 ²⁵ années

Problème du Logarithme Discret

Proposition

Soit p un nombre premier. On a les propositions suivantes :

- \mathbb{F}_p^* est cyclique
- il existe $g \in \mathbb{F}_p^* tq \ ord(g) = p-1$. g est alors appelé racine primitive de l'unité.

Définition

Soit p un nombre premier et soit g une racine primitive de l'unité.

- Pour tout $y \in \mathbb{F}_p^*$ il existe x tq $g^x = y \mod p$.
- On dit alors que x est le logarithme discret de y modulo p et on note x = log_g(y)

Exemple:

On prend ici n = 11 et g = 2

n	1	2	3	4	5	6	7	8	9	10
$\log_2(n)$	0	1	8	2	4	9	7	3	6	5

Cryptosystème d'ElGamal

Choix de la clé privée et publique

- Bob choisit un grand nombre premier p, tel que le problème du logarithme discret est difficile à résoudre dans \mathbb{F}_p^* . Il choisit g une racine primitive dans \mathbb{F}_p^*
- Bob choisit un nombre d tel que 0 < d < p-1 et calcule $b = g^d \mod p$
- Bob alors publie le triplet (p,g,b) qui représentera la clé publique. La clé privée étant le nombre d choisi.

Cryptosystème d'ElGamal

Cryptage du message

Supposons qu'Alice veuille envoyer un message M à Bob.

- Elle commence par choisir un nombre k tq 0 < k < p-1
- Elle calcule alors $r = g^k$ et $t = b^k M \mod p$
- Alice envoie le couple (r,t) à Bob

Décryptage du message

Pour décrypter le message Bob doit calculer

$$tr^{-d} = (b^k M)(g^{-kd}) = (g^{kd} M)(g^{-kd}) = M \pmod{p}$$

Sécurité des cryptosystèmes

- L'algorithme pour résoudre le problème du logarithme discret le plus rapide se fait $\mathcal{O}(e^{\left(\sqrt{1/2}+o(1)\right)\sqrt{\ln(n)\ln(\ln(n))}})$.
- On suppose que l'ordinateur effectue chaque opération en une microseconde

Longueur du nombre	Nb d'opérations	Durée
100	3.9×10^6	3 secondes
200	9.9×10^9	2.5 heures
500	1.3×10^{17}	3170 années

Test de Primalités

Test de Fermat

Un nombre n n'est pas premier ssi $\exists a \in (\mathbb{Z}/n\mathbb{Z})^*, a^{n-1} \not\equiv 1[n]$

Démonstration.

Le sens directe est la contraposée du théorème de Fermat.

L'autre sens découle du fait que si $a^{n-1} \equiv 1[n]$ alors a est premier avec n

Test de primalités

Test de Miller Rabin

- Notons $n-1=2^s t$ où t est un nombre impair
- si n n'est pas premier alors il existe $a \in (\mathbb{Z}/n\mathbb{Z})^*$ tq $a^t \not\equiv 1[n]$ ou $a^{2^it} \not\equiv -1[n]$ avec 0 < i < s
- un tel entier est appelé un témoin de Miller

Lemme

Si n est un entier composé au moins 3 quarts des nombres entre 2 et n-2 sont des témoins de Miller.

En utilisant ce lemme on peut alors écrire le test probabiliste de Miller.

Test de primalité

Test probabiliste de Miller-Rabin

- On choisit un nombre t qui représentera le nombre de test à effectuer
- 2 on choisit aléatoirement un nombre entre 2 et n-2
- 3 si a n'est pas un témoin de Miller on réitère l'opération
- Si après t test le test n'est pas terminé on retourne "n est premier avec une probabilité supérieure à $1-\frac{1}{4^t}$ "

Comparaison entre les deux tests

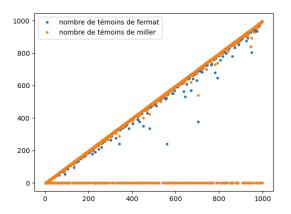


Figure – Comparaison entre les deux méthodes 🖘 🖘 🖫 🗷

Test de Lucas-Lehmer

Théorème

Un nombre $\mathsf{p} \in \mathsf{N}$ est premier ssi il existe $\mathsf{a} \in \mathbb{F}_{\mathsf{p}}^*$ d'ordre $\mathsf{p}\text{-}1$

Définition

Un nombre de Mersenne est un terme de la suite $M_n = 2^n - 1$

Théorème

Soit la suite $(s_n)_{n \in \mathbb{N}}$ définie par récurrence : $s_0 = 4$ $s_{n+1} = (s_n)^2 - 2$

Soit p un nombre premier impaire. M_p est premier ssi $M_p|s_{p-2}$

Test de Lucas-Lehmer

Description du test

- choisir un entier naturel p qui est premier et impair
- 2 Calculer le nombre de Mersenne M_p
- **3** Calculer s_{p-2}
- Evaluer le reste de la division euclidienne de s_{p-2} par M_p . S'il vaut 0 alors M_p est un nombre premier

Introduction et Notations Premières techniques de cryptographie Crypatge asymétrique et RSA Problème du Logarithme Discret Test de Primalités

Merci pour votre attention

Algorithmes

```
def nombre de temoin fermat(p) :
    acc=0
    for i in range(2.p) :
        if f(i,p-1,p)%p !=1:
            acc+=1
    return acc
def temoin Miller Rabin(a,n) :
    s.t=0.n-1
    while t%2==0 :
        s.t=s+1.t/2
    if f(a.t.n)==1 :
        return False
    for i in range (s) :
        if f(a,(2**i)*t,n)== n-1 :
            return False
    return True
def test Miller Rabin(n,t) :
    for in range (t):
        if temoin Miller Rabin(random.randint(2,n-2),n) :
            return "{} n'est pas premier".format(n)
    return "{} est premier avec un probabilté supérieure à {}".format(n,1-0.25**t)
```

Figure -

Algorithmes

```
def sontpremier(n,m) :
    d=min(n,m)
    for i in range (2,d+1) :
        if m%i==0 and n%i==0 :
            return False
    return True
def indFuler(n) :
    acc=1
    for i in range(1,n) :
        if sontpremier(i,n) :
            acc=acc+1
    return acc
def nbre miller(n) :
    acc=0
    for i in range(2,n-1) :
        if temoin Miller Rabin(i,n) :
            acc+=1
    return acc
def nbre fermat(n) :
    acc=0
    for i in range (2,n-1) :
        if temoin Fermat(i,n) :
            acc+=\overline{1}
    return acc
def s(n) :
    if n==0 .
        return 4
    return s(n)**2-2
def Mersenne est premier(n) :
    return s(n-2)%(2**n-1)==0
```