Chaîne de Lettres

Sommaire

Modèle informatique
Explication de code
Exploitation de la simulation
Processus de branchement
Vente pyramidale avec quota
Chaîne de lettres avec plusieurs participations
Systèmes de Ponzi
Tableau comparatif des constantes

Chaîne de Lettres

Modèle Informatique

Variables essentielles

Acheteurs potentiels: P_{tot}

Génération : g

Acheteurs à la génération g: P(g)

Nombre d'exemplaires de la lettre à la génération g Z_g

$$\begin{split} \mathbb{P}_{\geq 1}(g) &= \mathbb{P}_{\geq 1}(0) \frac{P(g)}{P_{tot}} \\ \mathbb{P}_{\geq 2}(g) &= \mathbb{P}_{\geq 1}(g)^2 \\ \mathbb{P}_{0}(g) &= 1 - \mathbb{P}_{\geq 1}(g) \\ \mathbb{P}_{2}(g) &= \mathbb{P}_{\geq 2}(g) \\ \mathbb{P}_{1}(g) &= 1 - \mathbb{P}_{2}(g) - \mathbb{P}_{0}(g) \end{split}$$

Chaîne de Lettres

Explication de Code

```
import random
```

```
def sold(p1, p2):
    p0 = 1-p1-p2
    return(random.choices((0,1,2),(p0,p1,p2))[0])
```

On note **p1** et **p2** les probabilités de vendre 1 ou 2 lettres, ce programme renvoie soit 0, soit 1 soit 2 avec les probabilités correspondantes

```
def pop_gen(g_max, p1, p2):
    g = 0
    pop = [[g, -50]]
    indice = 0
    while g < g_max and len(pop)-indice > 0:
        g += 1
        l = len(pop)
        for i in range(indice, l):
            s = sold(p1, p2)
            pop[i][1] += 50*s
            pop += [[g, -50]]*s
        indice = l
    return(pop)
```

La liste **pop** est la liste des participants, on connait leur génération **g** et l'argent qu'ils ont gagné.

La variable **indice** correspond à l'indice dans **pop** du début de la génération en cours de traitement.

On force la simulation à s'arrêter à la génération **g_max**.

Explication de code

Impossible

```
>>> pop_gen(12, .5, .4)
[[0, 50], [1, 100], [1, 100], [2, 100], [2, 100], [2, 50], [3, 50]
```

Il y avait une erreur dans le programme **pop_gen**, car personne ne peut en théorie gagner plus de 50 dollars.

```
>>> pop_gen(12, .5, .4)
[[0, 50], [1, 100], [1, 100], [2, 100], [2, 100], [2, 50], [3, 50]
```

Il y avait une erreur dans le programme **pop_gen**, car personne ne peut en théorie gagner plus de 50 dollars.

```
for i in range(indice, l):
    s = sold(p1, p2)
    pop[i][1] += 50*s
    pop += [[g, -50]]*s
```

```
>>> t
[[0], [0]]
>>> t[0][0] = 1
>>> t
[[1], [1]]
```

Lorsqu'une personne vend sa lettre, on veut que elle seule touche les 50 dollars, ce qui n'était pas le cas. Voici la version corrigée :

```
def pop gen repaired(g max, p1, p2):
    q = 0
    pop = [[g, -50]]
   indice = 0
    while g < g max and len(pop)-indice > 0:
        a += 1
        l = len(pop)
        for i in range(indice, l):
            s = sold(p1, p2)
            pop[i][1] += 50*s
            for i in range(s):
               pop += [[g, -50]]
        indice = 1
    return (pop)
```

```
def total_sum(t):
    sum = 0
    for elem in t:
        sum += elem[1]
    return(sum)
```

t contient des couples d'éléments, total_sum calcule la somme des deuxièmes arguments.

```
def total_sum(t):
    sum = 0
    for elem in t:
        sum += elem[1]
    return(sum)
```

t contient des couples d'éléments, total_sum calcule la somme des deuxièmes arguments.

```
>>> t = pop_gen_repaired(24, .5, .4)
>>> total_sum(t)
-50
```

```
def update_letter(pop, i):
    letter = pop[i][2]
    first = letter[0]
    if first is not None:
        pop[first][1] += 50
    return(letter[1::]+[i])
```

La liste **letter** de 12 indices correspondant aux précédents acheteurs de la lettre

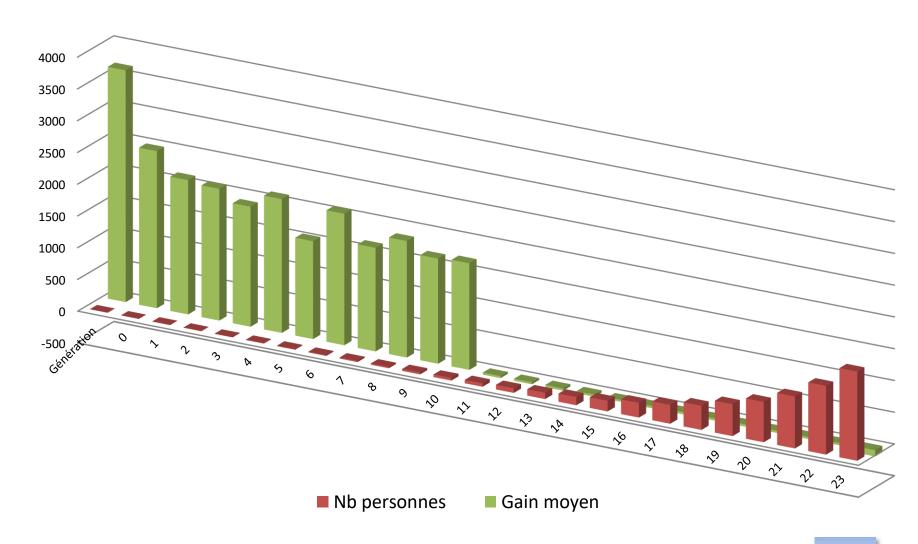
Les 12 noms qui étaient à l'origine sur la liste sont remplacés par None

```
def pop gen2(p1, p2, population):
    a = 0
    pop = [[g, -100, [None]*12]]
    indice = 0
    while len(pop)-indice > 0:
        q += 1
        l = len(pop)
        pop dispo = population-l
        p1 g = p1*(pop dispo)/population
        p2_g = p2*(pop_dispo)/population
        for i in range(indice, l):
            s = sold(p1_g, p2_g)
            pop[i][1] += 50*s
            for j in range(s):
                pop.extend([[g, -100, update_letter(pop, i)]])
        indice = 1
    return (pop)
```

On note **p1_g** et **p2_g** les probabilités à la génération **g** de vendre respectivement 1 et 2 lettres.

Chaîne de Lettres

Exploitation de la Simulation



```
def data(t):
                                            def data display(t):
    return([elem[:2] for elem in t])
                                                 for elem in t:
                                                     print(elem[0], elem[1])
def avg(t):
                                            def avg display(t):
    if t == []:
                                                if t == []:
        return([])
                                                     return([])
    gen max = t[-1][0]
                                                gen max = t[-1][0]
                                                i = 0
    stats = []
    i = 0
                                                for gen in range(gen max+1):
    for gen in range(gen max+1):
                                                     sum = 0
        sum = 0
                                                     n = 0
        n = 0
                                                     while i < len(t) and t[i][0] == gen:
        while i < len(t) and t[i][0] == gen
                                                         n += 1
            n += 1
                                                         sum += t[i][1]
           sum += t[i][1]
                                                         i += 1
            i += 1
                                                     print(gen, n, sum//n)
        stats += [[gen, n, sum//n]]
    return(stats)
```

Les versions **_display** permettent un affichage en colonnes plus facile à lire que les versions standards, qui renvoient un tableau de valeurs, exploitable par d'autres programmes.

```
>>> t = pop_gen2(.5, .4, 3000)
>>> avg display(t)
0 1 -50
1 1 -100
                                Gen Pop $
>>> t = pop gen2(.5, .4, 3000) 15 67 -27
                                16 83 -32
>>> avg_display(t)
                                17 104 -38
                                18 124 - 46
0 1 1750
                                19 131 -54
1 1 2350
                                 20 118 -59
2 1 3350
                                 21 98 -60
3 2 2050
                                 22 79 -56
4 3 1683
                                 23 71 -61
5 3 2016
                                 24 56 -67
6 3 2166
                                 25 38 -68
7 5 1150
                                 26 25 -70
8 7 678
                                 27 15 -50
9 11 318
                                 28 15 -70
10 13 250
                                 29 9 -73
11 20 102
                                 30 5 - 70
12 25 48
                                 31 3 -17
13 36 1
                                 32 5 -90
14 48 -15
                                 33 1 -100
```

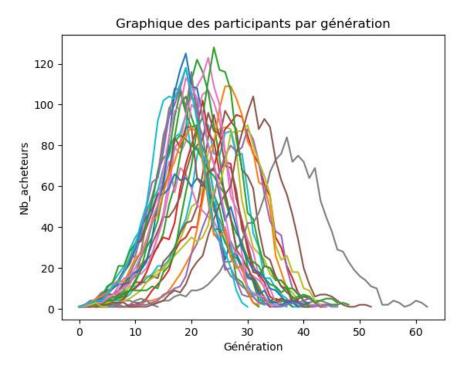
```
import matplotlib.pyplot as plt
                                            def coord plot(coord, type):
                                                for elem in coord:
                                                    x = elem[0]
def coord gen(n, g max, p1, p2):
                                                    y1 = elem[1]
    plt = []
                                                    y2 = elem[2]
    for i in range(n):
                                                    if type == 1:
        t = pop gen(g max, p1, p2)
                                                        plt.plot(x,y1)
        x = [elem[0]  for elem  in avg(t)]
                                                    else :
        v1 = [elem[1]  for elem  in avg(t)]
                                                        plt.plot(x,y2)
        y2 = [elem[2]  for elem  in avg(t)]
        plt += [[x,y1,y2]]
                                            def plot display(type):
    return(plt)
                                                plt.xlabel("Génération")
                                                if type == 1:
def coord gen2(n, p1, p2, population):
                                                    plt.ylabel("Nb acheteurs")
    plt = []
                                                else:
    for i in range(n):
                                                    plt.ylabel("Gain moven")
        t = pop gen2(p1, p2, population)
                                                plt.title("Graphique des gains par génération")
        x = [elem[0]  for elem  in avg(t)]
                                                plt.show()
        v1 = [elem[1]  for elem  in avg(t)]
        y2 = [elem[2]  for elem  in avg(t)]
        plt += [[x,y1,y2]]
    return(plt)
```

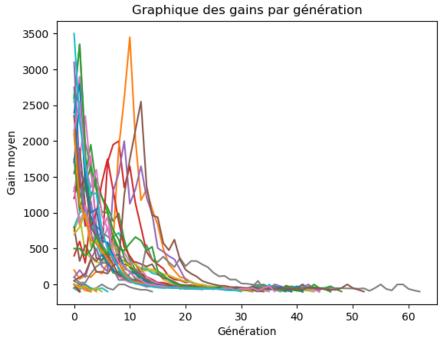
On note **n** le nombre de fois où on lance la simulation

Exploitation de la simulation

Premières générations

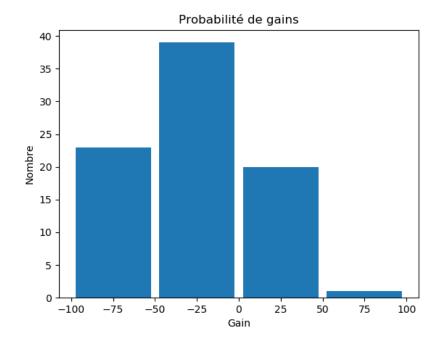
```
>>> coord = coord_gen2(50, .5, .4, 3000)
>>> coord_plot(coord, 2)
>>> plot_display(2)
>>> plot_display(1)
```





```
def histo data(p1, p2, population):
    t = pop gen2(p1, p2, population)
    g \max = t[-1][0]
    h = [[elem[1] for elem in data(t) if
elem[0] == q] for q in range(q max+1)]
    return(h)
def histo bar(h, g):
    if len(h) <= q:
       dat = [-2]
    else:
        dat = h[a]
    categories = [50*i for i in range(-2,
\max(dat)/(50)]
    plt.hist(dat, categories, rwidth = 0.9)
def histo display():
    plt.xlabel("Gain")
    plt.ylabel("Nombre")
    plt.title("Probabilité de gains")
    plt.show()
>>> h = histo_data(.5, .4, 3000)
>>> histo bar(h, 17)
>>> histo display()
```

```
def histo data(p1, p2, population):
    t = pop gen2(p1, p2, population)
    q \max = t[-1][0]
   h = [[elem[1] for elem in data(t) if
elem[0] == q] for q in range(q max+1)]
    return(h)
def histo bar(h, g):
    if len(h) <= q:
       dat = [-2]
    else:
        dat = h[a]
    categories = [50*i for i in range(-2,
\max(dat)/(50)]
    plt.hist(dat, categories, rwidth = 0.9)
def histo display():
    plt.xlabel("Gain")
    plt.ylabel("Nombre")
    plt.title("Probabilité de gains")
    plt.show()
>>> h = histo_data(.5, .4, 3000)
>>> histo bar(h, 17)
>>> histo display()
```



Les données de la génération **17** pour une simulation de paramètres **p1 = .5**, **p2 = .4**, **pop = 3000**

Loi faible

```
def prob_bar(n, p1, p2, population, g):
    dat = []
    for i in range(n):
        h = histo_data(p1, p2, population)
        if len(h) > g:
            dat += h[g]
        categories = [50*i for i in range (-2,
max(dat)//50)]
    plt.hist(dat, categories, rwidth = 0.9)
```

```
>>> prob_bar(500, .5, .4, 3000, 17)
```

>>> histo display()

On moyenne les données de la génération **17** sur **500** simulations pour les paramètres

$$p1 = .5$$
, $p2 = .4$, $pop = 3000$

Exploitation de la simulation

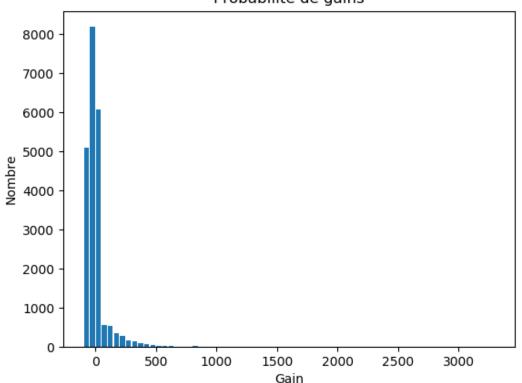
Probabilités théoriques

```
def prob_bar(n, p1, p2, population, g):
    dat = []
    for i in range(n):
        h = histo_data(p1, p2, population)
        if len(h) > g:
            dat += h[g]
        categories = [50*i for i in range (-2,
max(dat)//50)]
    plt.hist(dat, categories, rwidth = 0.9)
```

```
>>> prob_bar(500, .5, .4, 3000, 17)
```

On moyenne les données de la génération **17** sur **500** simulations pour les paramètres

$$p1 = .5$$
, $p2 = .4$, $pop = 3000$



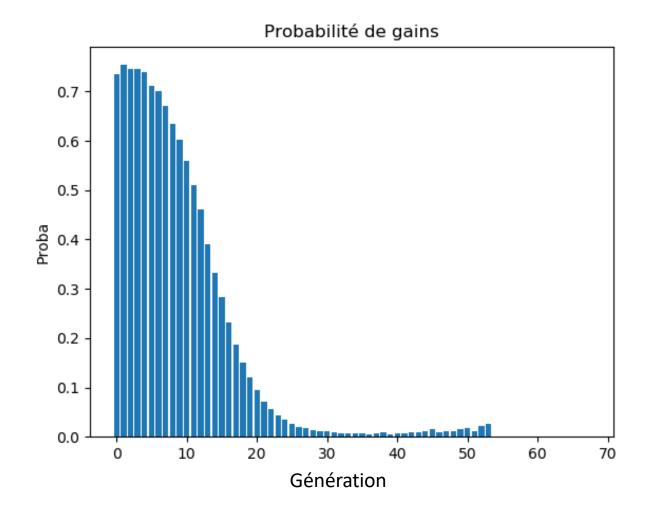
Gain par génération

```
def prob gain(n, cap, p1, p2, population):
    dat = [[]]
    for i in range(n):
        h = histo data(p1, p2, population)
        diff = len(h) - len(dat)
        if diff > 0:
            for j in range(diff):
                dat += [[]]
        for g in range(len(h)):
            p = len([elem for elem in h[g] if elem >
cap])/len(h[g])
            dat[q] += [p]
    for i in range(len(dat)):
        dat[i] = sum(dat[i])/len(dat[i])
    return(dat)
def bar display(dat):
    plt.bar([i for i in range(len(dat))], dat)
    plt.xlabel("Gain")
    plt.ylabel("Proba")
    plt.title("Probabilité de gains")
    plt.show()
```

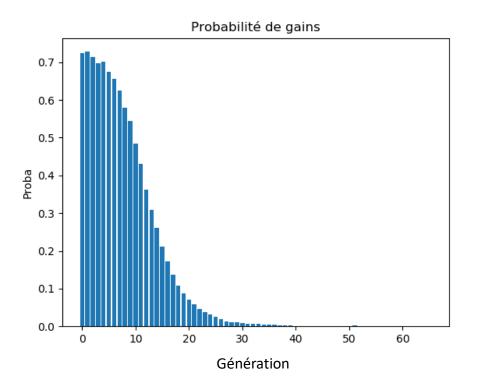
On note cap le seuil de gain au dessus duquel on considère un succès

$$>>> dat = prob_gain(500, 0, .5, .4, 3000)$$

>>> bar_display(dat)



La probabilité de gagner plus que **0\$** en fonction de la génération, moyennée sur **500** simulations



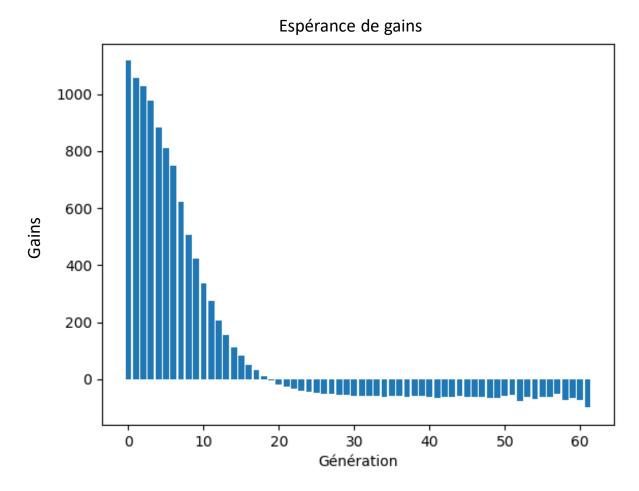
Probabilité de gains 0.6 0.5 0.4 Proba 0.3 0.2 0.1 0.0 10 30 40 50 60 70 20 Génération

Pour un gain strictement supérieur à **100**\$

Pour un gain strictement supérieur à 500\$

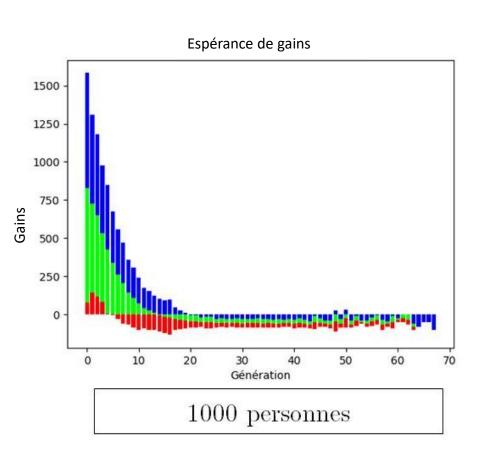
```
def expect val(n, p1, p2, population):
    dat = [[]]
    for i in range(n):
        h = histo data(p1, p2, population)
        diff = len(h) - len(dat)
        if diff > 0:
            for j in range(diff):
                dat += [[]]
        for g in range(len(h)):
            e = sum(h[g])/len(h[g])
            dat[q] += [e]
    for i in range(len(dat)):
        dat[i] = sum(dat[i])/len(dat[i])
    return(dat)
def val display(dat):
    plt.bar([i for i in range(len(dat))], dat)
    plt.xlabel("Génération")
    plt.ylabel("Gain")
    plt.title("Espérance de gain")
    plt.show()
```

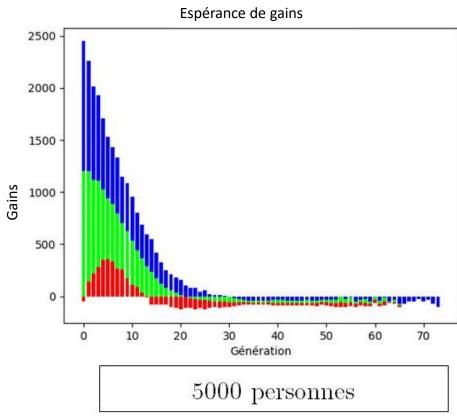
```
>>> dat = expect_val(500, .5, .4, 3000)
>>> val_display(dat)
```



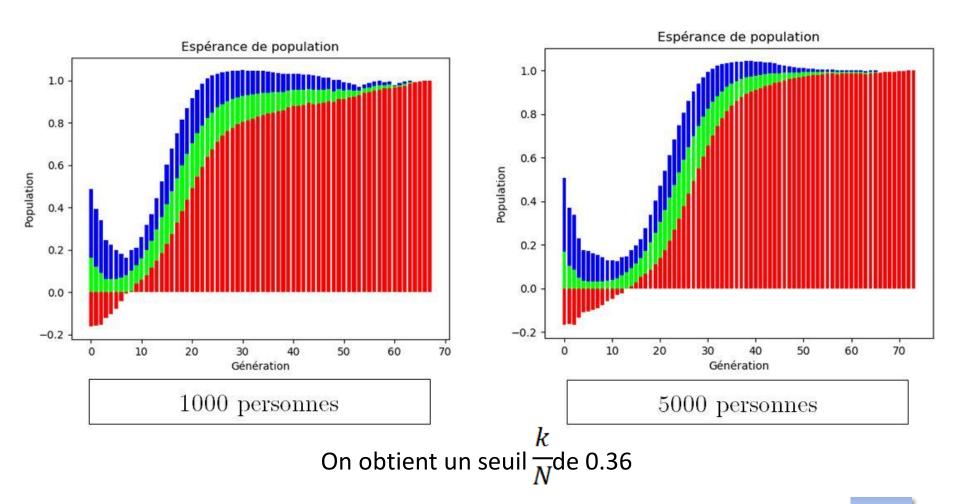
L'espérance de gains moyennée sur **500** simulations

Écart type





On fait apparaître l'écart type sur les courbes de population



- 1. L'évolution de la simulation pourrait se faire en fonction du temps plutôt que de la génération.
- 2. Il y a un « effet de mode » initial et on peut simuler un taux de confiance de la population en fonction des gains et des pertes des premiers participants.
- 3. On peut permettre aux participants d'acheter des lettres plusieurs fois, où d'acheter plusieurs lettres à la fois.
- 4. Les probabilités de ventes sont inhomogènes car certains habitants connaissent plus de monde.
- 5. Tenir compte de l'augmentation du nombre de participants potentiels en modélisant la façon dont la lettre peut atteindre de nouvelles villes.

Chaîne de Lettres

Processus de Branchement

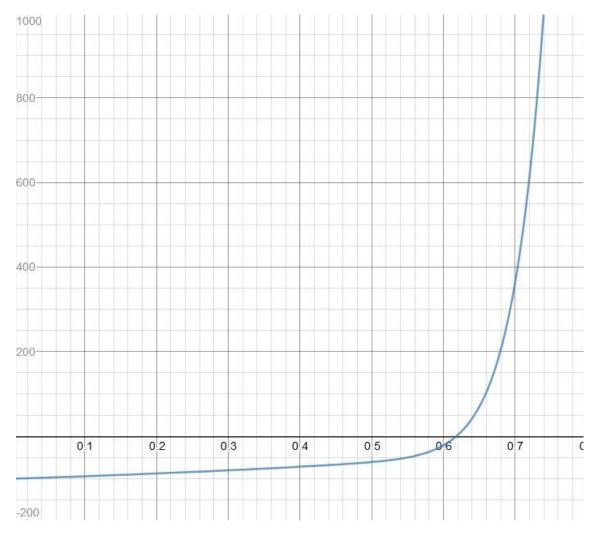
Approximation à l'origine :

$$\begin{split} P(g) \sim P_{tot} \\ \mathbb{P}_1(g) &= \mathbb{P}_1(0) \equiv p_1 \\ \mathbb{E} &= \mathbb{E}(Z_1) + \mathbb{E}(Z_{12}) - 100 = 50(m + m^{12} - 2) \\ m &= \mathbb{P}_1(g) + 2 * \mathbb{P}_2(g) = \mathbb{P}_{>1}(g) + \mathbb{P}_{>2}(g) = p_1(1 + p_1) \end{split}$$

Condition de gain:

$$\mathbb{E} > 0 \iff m > 1 \iff p_1 > \frac{\sqrt{5} - 1}{2} \sim 0.61$$

$$\mathbb{E} = f(p_1)$$



Espérance à l'origine en fonction de la probabilité de vendre une lettre Perte maximale : -100

Probabilité : $1 - p_1$

Gain maximal: 204 800

Probabilité : $p_1^{2*(2^{11}-1)}$

p_1	Probabilité de	Probabilité de	Espérance
	perte maximale	gain maximal	
0.25	0.75	10^{-2465}	-84.4
0.5	0.5	10^{-1233}	-60.9
0.62	0.38	10^{-850}	2.9
0.75	0.25	10^{-512}	1272.3
0.9	0.1	10^{-188}	31 240
0.99	0.01	10-18	170 933

Fonction génératrice des probabilités :

$$F_X(t) = \mathbb{E}(t^X) = \sum_{k=0}^{+\infty} \mathbb{P}(X = k)t^k$$

Propriétés:

$$F_X(0) = \mathbb{P}(X=0)$$

$$F_X^{(k)}(1) = \mu_k = \mathbb{E}\big(X(X-1)\dots(X-k+1)\big)$$

 $(X_k)_{k \le n}$ mutuellement indépendantes identiquement distribuées (VAIID)

$$S_n = \sum_{k=1}^n X_k$$

$$F_{S_n}(t) = \left(F_{X_1}(t)\right)^n$$

Si (Z_n) est un processus de branchement alors on a pour $n \in \mathbb{N}$

$$F_{Z_n}(t) = F_{Z_1}^{\circ(n)}(t)$$

Si (Z_n) est un processus de branchement alors on a pour $n \in \mathbb{N}$

$$F_{Z_n}(t) = F_{Z_1}^{\circ(n)}(t)$$

Démonstration:

$$F_{Z_n}(t) = \sum_{k=0}^{+\infty} \mathbb{P}(Z_n = k) t^k = \sum_{k=0}^{+\infty} t^k \sum_{l=0}^{k} \mathbb{P}(Z_n = k | Z_{n-1} = l) \mathbb{P}(Z_{n-1} = l)$$

$$= \sum_{l=0}^{+\infty} \mathbb{P}(Z_{n-1} = l) \sum_{k=l}^{+\infty} \mathbb{P}(Z_n = k | Z_{n-1} = l) t^k = \sum_{l=0}^{+\infty} \mathbb{P}(Z_{n-1} = l) F_{Z_n | Z_{n-1} = l}(t)$$

$$F_{Z_n|Z_{n-1}=l}(t) = \left(F_{Z_1}(t)\right)^l \implies F_{Z_n}(t) = \sum_{l=0}^{+\infty} \mathbb{P}(Z_{n-1}=l) \left(F_{Z_1}(t)\right)^l = F_{Z_{n-1}}\left(F_{Z_1}(t)\right)$$

Calcul de l'itéré de
$$F_{Z_1}=p_2t^2+p_1t+(1-p_1-p_2)$$

Calcul explicite:

```
def Fn(p1,p2,n,x):
    p0 = 1-p1-p2
    a = x
    for i in range(n):
        a = p0+p1*a+p2*a**2
    return(a)
```

Calcul de l'itéré de
$$F_{Z_1}=p_2t^2+p_1t+(1-p_1-p_2)$$

Calcul explicite $dE_{Z_1}^{\circ 3}(0)$ pour **p1=0.4, p2=0.5**

Calcul de l'itéré de
$$F_{Z_1}=p_2t^2+p_1t+(1-p_1-p_2)$$

Calcul formel:

```
from sympy import symbols, simplify
p1 = symbols('p1', float = True)
p2 = symbols('p2', float = True)
F = [1-p1-p2, p1, p2]
def Somme(P,Q):
    S = []
    m = min(len(P), len(Q))
    for i in range(m):
        S.append(P[i]+Q[i])
    S.extend(P[m:])
    S.extend(Q[m:])
    return(S)
def Produit(P,Q):
    S = [0]*(len(P)+len(Q)-1)
    for i, a in enumerate(P) :
        for j, b in enumerate(Q):
            S[i+j] = S[i+j] + a*b
    return(S)
```

```
def Puissances(P,n):
    Pn = [[1]]
    for i in range(n):
        Pn.append(Produit(Pn[-1],P))
    return(Pn)

def Compose(P,Q):
    PQ = []
    for a, Qi in zip(P, Puissances(Q, len(P)-1)):
        PQ = Somme(PQ, Produit([a], Qi))
    return(PQ)

def Iteres(P,n):
    L = [[0,1]]
    for i in range(n):
        L.append(Compose(L[-1],P))
    return(L)
```

Calcul de l'itéré de
$$F_{Z_1}=p_2t^2+p_1t+(1-p_1-p_2)$$

Calcul des coefficients de $F_{Z_1}^{\circ 3}$ pour **p1=0.4**, **p2=0.5**

```
>>> P = [0.1,0.4,0.5]

>>> [round(e,10) for e in Iteres(P,3)[-1]]
[0.1685125, 0.109, 0.19985, 0.175, 0.162575, 0.091, 0.06125, 0.025, 0.0078125]
```

Calcul de l'itéré de
$$F_{Z_1}=p_2t^2+p_1t+\left(1-p_1-p_2\right)$$

Calcul formel des coefficients de $F_{Z_1}^{\circ 2}$

```
>>> F = [1-p1-p2,p1,p2]

>>> [simplify(e) for e in Iteres(F,2)[-1]]

[-p1**2 - p1*p2 + p2*(p1 + p2 - 1)**2 - p2 + 1, p1*(p1 - 2*p2*(p1 + p2 - 1)), p2*(p1**2 + p1 - 2*p2*(p1 + p2 - 1)), 2*p1*p2**2, p2**3]
```

Calcul des probabilités :

$$F_{Z_n}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(Z_n = k) X^k$$

$$\mathbb{P}(Z_n = k) \text{ vaut}$$
>>> simplify(Iteres(F, "n")[-1]["k"])

Probabilité d'extinction:

$$F_{Z_n}(0) = \mathbb{P}(Z_n = 0)$$
 qui vaut pour $n = 3$

```
>>> simplify(Iteres(F,3)[-1][0])
-2*p1*p2**2*(p1 + p2 - 1)**3 - p1*(p1 - 2*p2*(p1 + p2 - 1))*(p1 + p2 - 1) - p1*(p1 + p2 - 1) - p1 + p2**3*(p1 + p2 - 1)**4 + p2*(p1 + p2 - 1)**2*(p1**2 + p1 - 2*p2*(p1 + p2 - 1)) + p2*(p1 + p2 - 1)**2 - p2 + 1
```

Probabilité d'extinction:

$$(F_{Z_n}(0))_n$$
 croissante et majorée donc $F_{Z_n}(0) \xrightarrow[n \to +\infty]{} l$
 $F_{Z_1}(l) = l, \qquad l' = \min_{[0,1]} \{x, \qquad F_{Z_1}(x) = x\}$

$$F_{Z_1} \text{ croissante convexe}$$

$$0 \le l' \Rightarrow F_{Z_n}(0) \le l' \Rightarrow l \le l' \Rightarrow l = l'$$

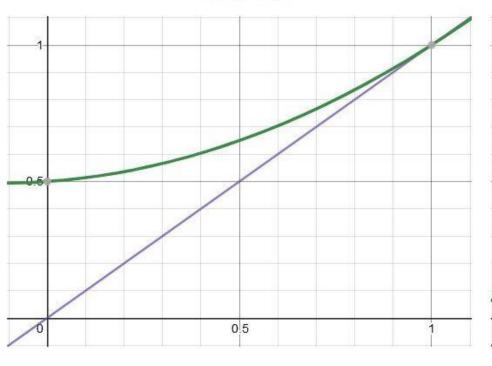
$$\mathbb{E}(Z_1) = m, \qquad \mathbb{V}(Z_1) = \sigma^2$$

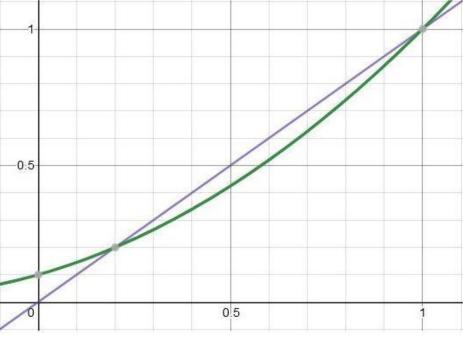
$$F'_{Z_1}(1) = m \le 1, \ F'_{Z_1} \text{ croissante}$$

 $\Rightarrow l = 1$

$$F'_{Z_1}(1) = m > 1, F_{Z_1}(0) = p_0 > 0$$

 $\Rightarrow l < 1$





Espérance:

$$\mathbb{E}(Z_n) = F'_{Z_n}(1) = \left(F_{Z_1}^{\circ n}\right)'(1) = \prod_{k=0}^{n-1} \left(F'_{Z_1} \circ F_{Z_1}^{ok}\right)(1) \underset{F_{Z_1}(1)=1}{=} \left(F'_{Z_1}(1)\right)^n = m^n$$

$$\mathbb{E}(Z_n) = m^n$$

Variance:

$$\mathbb{V}(Z_n) \underset{m=1}{\overset{=}{\underset{m \neq 1}{\overset{=}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}{\underset{m = 1}{\overset{=}}}{\underset{m = 1}{\underset{m = 1}{\underset$$

Variance:

$$\mathbb{V}(Z_n) \underset{m=1}{\overset{=}{\underset{m\neq 1}{=}}} \begin{cases} m^{n-1} \sigma^2 \left(\frac{1-m^n}{1-m} \right) \\ \sigma^2 n \end{cases}$$

<u>Démonstration</u>:

$$\mathbb{V}(Z_n) = F_{Z_n}''(1) + \mathbb{E}(Z_n) - \mathbb{E}(Z_n)^2$$

$$F_{Z_n}''(1) = \sum_{i=0}^{n-1} (F_{Z_1}' \circ F_{Z_1}^{oi})'(1) \prod_{\substack{k=0\\k \neq i}}^{n-1} F_{Z_1}' \circ F_{Z_1}^{ok} (1)$$

$$= m^{n-1} \sum_{i=0}^{n-1} \left(\prod_{l=0}^{i-1} \left(F'_{Z_1} \circ F^{\circ l}_{Z_1} \right) (1) \right) \left(F''_{Z_1} \circ F^{\circ i}_{Z_1} (1) \right) = m^{n-1} (\sigma^2 + m - m^2) \sum_{i=0}^{n-1} m^i$$

$$= \begin{cases} m^{n-1} (\sigma^2 + m - m^2) \left(\frac{1 - m^n}{1 - m} \right) = \left\{ m^{n-1} \sigma^2 \left(\frac{1 - m^n}{1 - m} \right) + m^n - m^{2n} \right\} \\ m^{n-1} (\sigma^2 + m - m^2) n \end{cases}$$

- 1) Si m > 1 alors $\mathbb{P}(Z_n > 0) \xrightarrow{+\infty} 1 l$
- 2) Si m < 1 alors $\mathbb{P}(Z_n > 0) \sim Cm^n$
- 3) Si m=1 alors $\mathbb{P}(Z_n>0)\sim \frac{2}{\sigma^2 n}$

$\underline{\text{Lemme}}$:

1) Si
$$m > 1$$
 alors $\mathbb{P}(Z_n > 0) \xrightarrow[+\infty]{} 1 - l$

2) Si
$$m < 1$$
 alors $\mathbb{P}(Z_n > 0) \sim Cm^n$

3) Si
$$m=1$$
 alors $\mathbb{P}(Z_n>0)\sim \frac{2}{\sigma^2 n}$

Démonstration:

2)
$$\mathbb{P}(Z_{n} > 0) \leq \sum_{k=0}^{+\infty} \mathbb{P}(Z_{n} > 0) = \mathbb{E}(Z_{n}) = m^{n}$$

$$\mathbb{P}(Z_{n+1} > 0) = \frac{1 - F_{Z_{1}} \left(F_{Z_{n}}(0) \right)}{1 - F_{Z_{n}}(0)} \mathbb{P}(Z_{n} > 0)$$

$$\frac{1 - F_{Z_{1}} \left(F_{Z_{n}}(0) \right)}{1 - F_{Z_{n}}(0)} \underset{TAF}{=} F'_{Z_{1}}(c) \lesssim_{convexit\acute{e}} F'_{Z_{1}}(1) = m$$

$$\left(\frac{\mathbb{P}(Z_{n} > 0)}{m^{n}} \right)_{n} \xrightarrow{n \to +\infty} C > 0$$

3)
$$F_{Z_{1}}''(1) = \sigma^{2} \operatorname{car} m = 1$$

$$F_{Z_{1}}(1-x) = F_{Z_{1}}(1) - F_{Z_{1}}'(1)x + F_{Z_{1}}''(1)\frac{x^{2}}{2} + o(x^{2})$$

$$= 1 - x + \sigma^{2}\frac{x^{2}}{2} + o(x^{2})$$

$$u_{n} = \mathbb{P}(Z_{n} > 0), \quad u_{n+1} = 1 - F_{Z_{1}}(1 - u_{n})$$

$$\frac{1}{u_{n+1}} - \frac{1}{u_{n}} = \frac{1}{u_{n}} \left(\frac{1}{1 - \frac{\sigma^{2}}{2}u_{n} + o(u_{n})} - 1\right) = \frac{1}{u_{n}} \left(\frac{\sigma^{2}}{2}u_{n} + o(u_{n})\right) \xrightarrow[n \to +\infty]{} \frac{\sigma^{2}}{2}$$

$$\frac{1}{u_{n}} = \frac{1}{u_{0}} + \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_{k}}\right) \sim \frac{\sigma^{2}n}{2}$$

$$u_{n} \sim \frac{2}{\sigma^{2}n}$$

$$K = \min\{k, \quad Z_k = 0\}$$

Espérance dans le cas sous-critique :

$$\mathbb{E}(K) = \sum_{k=1}^{+\infty} \mathbb{P}(Z_k > 0) = \frac{C}{1 - \mathbb{E}(Z_1)}$$

Chaîne de Lettres

Vente pyramidale Avec quota

Variables essentielles

Coût d'entrée : c

Quota: N

Nombre de personnes recrutées : R

Gain par recrutement : d

Rang d'entrée : k

Condition:

$$\mathbb{E}(R)d > c$$

$$\mathbb{E}(R)d > c$$

$$\mathbb{E}(R) > \frac{c}{d}$$

$$X_{i} \sim \mathcal{B}\left(\frac{1}{i}\right)$$

$$R = \sum_{i=k}^{N-1} X_{i}$$

$$\mathbb{E}(R) \underset{N \to +\infty}{\sim} \ln\left(\frac{N}{k}\right)$$

Ne dépend que du quotient $\frac{N}{k}$

Condition:

$$\frac{N}{k} > \exp\left(\frac{c}{d}\right)$$

$$\frac{k}{N} < exp\left(-\frac{c}{d}\right) \underset{c=d}{=} e^{-1} \cong 0.368$$

$$\mathbb{E} = d\mathbb{E}(R) - c$$

$$\mathbb{E} \underset{N \to +\infty}{\sim} d \ln(N)$$

Probabilité de perte totale :

$$\mathbb{P}_k(0) = \prod_{i=k}^{N-1} (1 - 1/i) = \frac{(k-1)}{(N-1)}$$

Nombre de participants qui perdent tout :

$$\sum_{k=1}^{N} \mathbb{P}_{k}(0) = \frac{1}{N-1} (1 + \dots + N-1) = \frac{N}{2}$$

La proportion de participants qui recrutent exactement r personnes tend vers $2^{-(r+1)}$ quand $N\to +\infty$

La proportion de participants qui recrutent exactement r personnes tend vers $2^{-(r+1)}$ quand $N \to +\infty$

Démonstration:

$$X_{i} \sim \mathcal{B}(p_{i})$$

$$\forall x, \qquad \mathbb{P}(Y_{i} \geq x) \geq \mathbb{P}(X_{i} \geq x)$$

$$\text{Contrainte:}$$

$$\mathbb{P}(Y_{i} = 0) \leq \mathbb{P}(X_{i} = 0) = 1 - p_{i}$$

$$\text{Définition:}$$

$$Y_{i} \sim \mathcal{P}(\lambda_{i})$$

$$e^{-\lambda_{i}} = 1 - p_{i} \Rightarrow \lambda_{i} = -\ln(1 - p_{i})$$

$$\text{Modèle:}$$

$$p_{i} = \frac{1}{i}$$

$$S_{k} = \sum_{i=k}^{N-1} X_{i} \leq T_{k} = \sum_{i=k}^{N-1} Y_{i}$$

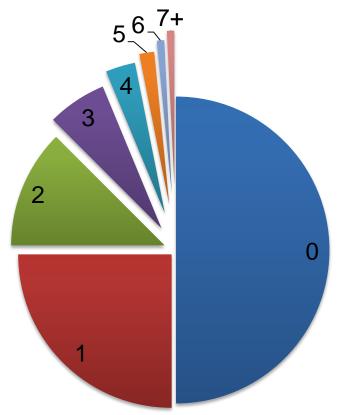
$$\begin{aligned} \operatorname{Propriét\'e}: & T_k \sim \mathcal{P}(\gamma_k) \\ \gamma_k &= \sum_{i=k}^{N-1} \lambda_i = \sum_{i=k}^{N-1} (\ln(i) - \ln(i-1)) = \ln\left(\frac{N-1}{k-1}\right) \\ \operatorname{Montrons que}: & \\ \frac{1}{N-2} \sum_{k=2}^{N-1} \mathbb{P}(T_k = r) \xrightarrow[N \to +\infty]{} 2^{-(r+1)} \\ \frac{1}{N-2} \sum_{k=2}^{N-1} \mathbb{P}(T_k = r) &= \frac{1}{N-2} \sum_{k=2}^{N-1} e^{-\gamma_k} \frac{\gamma_k^r}{r!} \\ &= \frac{1}{r! (N-2)} \sum_{k=2}^{N-1} \frac{k-1}{N-1} \left(\ln\left(\frac{N-1}{k-1}\right) \right)^r \end{aligned}$$

La somme de Riemann tend vers

$$\frac{1}{r!} \int_{0}^{1} v \left(\ln \left(\frac{1}{v} \right) \right)^{r} dv = \lim_{z = \ln \left(\frac{1}{v} \right)} \frac{1}{r!} \int_{0}^{+\infty} e^{-2z} z^{r} dz = 2^{-(r+1)}$$

La proportion de participants qui recrutent exactement r personnes tend vers $2^{-(r+1)}$ quand $N \to +\infty$

Proportion de participants en fonction du nombre de recrues



Chaîne de Lettres

Chaîne de lettres Avec plusieurs Participations

Variables essentielles

Quota: N

Nombre de participants : \boldsymbol{k}

Participants de chaque type : (U_k, V_k, W_k)

Temps d'arrêt de la chaîne : \boldsymbol{K}

$$(U_0, V_0, W_0) = (u_0, 0, 0)$$

Vente d'une lettre :

$$U_{k+1} - U_k = W_{k+1} - W_k = \begin{cases} 1\\0 \end{cases}$$

$$\Rightarrow \sum_{k=0}^{n-1} (U_{k+1} - U_k) = \sum_{k=0}^{n-1} (W_{k+1} - W_k)$$

$$\Rightarrow$$
 $W_n = U_n - U_0 + W_0 = U_n - u_0$

Achat d'une lettre :

$$U_{k+1} + V_{k+1} + W_{k+1} = U_k + V_k + W_k + 1$$

$$\Rightarrow U_n + V_n + W_n = U_0 + V_0 + W_0 + n$$

$$\Rightarrow V_n = n + u_0 - U_n - W_n = n + 2u_0 - 2U_n$$

Répartition selon le nombre de lettres vendues :

$$(U_k, V_k, W_k) = (U_k, k + 2u_0 - 2U_k, U_k - u_0)$$

Règle de fonctionnement de la chaîne de Markov :

$$\mathbb{P}(U_{k+1} = u | U_k = u) = 1 - \mathbb{P}(U_{k+1} = u + 1 | U_k = u)$$
$$= 1 - \frac{V_k}{U_k + V_k} = \frac{u}{k + 2u_0 - u}$$

Quota:

$$U_k + V_k < N \implies k + 2u_0 - U_k < N$$
$$\Rightarrow U_k > 2u_0 + k - N$$

$$V_k \ge 0 \implies k + 2u_0 - 2U_k \ge 0$$

$$\Rightarrow U_k \le u_0 + \frac{k}{2}$$

Encadrement:

$$2u_0 + k - N < U_k \le u_0 + \frac{k}{2}$$

$$2u_0 + k - N < u_0 + \frac{k}{2} \implies k < 2N - 2u_0$$

Effondrement:

$$k < 2N - 2u_0$$

Temps d'arrêt :

$$K = \min\{k, \qquad U_k + V_k = N\}$$

$$\mathbb{P}(U_{k+1} = U_k + 1) = \frac{V_k}{V_k + U_k} \xrightarrow{k \to +\infty} \alpha$$

$$\frac{U_k}{k} = \xrightarrow{k \to +\infty} \alpha$$

$$\frac{V_k}{U_k + V_k} \sim \frac{\left(1 - \frac{2U_k}{k}\right)}{1 - \frac{U_k}{k}}$$

$$\alpha = \frac{(1 - 2\alpha)}{1 - \alpha}$$

$$\alpha = \frac{(3 - \sqrt{5})}{2} \cong 0.382$$

Contraintes:

$$\begin{cases} U_K = K\alpha \\ U_K + V_K + W_K = K \\ 2W_K + V_K = K - 1 \approx K \end{cases}$$

Proportions:

(0.382, 0.236, 0.382)

$$U_K + V_K = N \Rightarrow K = \frac{N}{(0.382 + 0.236)} = 1.62N$$

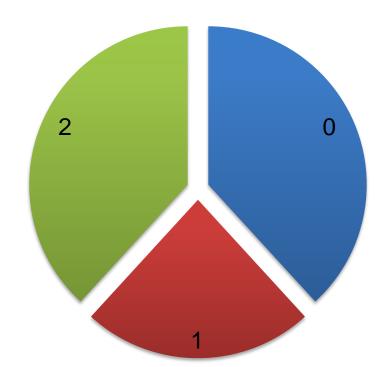
Vérification :

$$W_K = 0.62N = 0.62(U_K + V_K) \text{ car } 0.62 * (0.382 + 0.236) = 0.382$$

Proportions en fonction du nombre de lettres vendues

Proportions:

(0.382, 0.236, 0.382)



Chaîne de Lettres

Systèmes De Ponzi

Variables essentielles

Dépôt initial : S_0

Flux entrant : s(t)

Taux nominal promis : r_p

Taux nominal d'intérêt : r_n

Taux nominal de retrait : r_w

Taux réels et nominaux :

$$R_n \text{ et } R_w \text{ r\'eels}$$

 $S(t+1) = S(t)(1+R_n)(1-R_w)$

$$r_n \text{ et } r_w \text{ nominaux}$$

$$S(t+dt) = S(t)(1+r_ndt)(1-r_wdt)$$

$$\Rightarrow S(t+1) = S(t)(1+r_ndt)^{\frac{1}{dt}}(1-r_wdt)^{\frac{1}{dt}} \xrightarrow[dt\to 0]{} S(t)e^{r_n-r_w}$$

$$S(t) = S_0 e^{t(r_n - r_w)}$$

Argent promis:

$$\frac{dS_f}{dt}(t) = (r_p - r_w)S_f(t) + s(t)$$

$$S_f(t) = e^{(r_p - r_w)t} \left(S_0 + \int_0^t e^{-(r_p - r_w)u}s(u)du\right)$$

Argent réel:

$$\frac{dS}{dt}(t) = r_n S(t) + s(t) - r_w S_f(t)$$

$$S(t) = e^{r_n t} \left(S_0 + \int_0^t e^{-r_n u} (s(u) - r_w S_f(u)) du \right)$$

Investissement:

$$s(t) = S_0(e^{r_i t} - 1)$$

Argent promis:

$$S_f(t) = S_0 \left(-\frac{1}{r_w - r_p} \right) + S_0 \left(\frac{1}{r_i + r_w - r_p} \right) e^{r_i t} + S_0 \left(1 + \frac{1}{r_w - r_p} - \frac{1}{r_i + r_w - r_p} \right) e^{\left(r_p - r_w \right) t}$$

Argent réel:

$$S(t) = a + be^{r_n t} + ce^{r_i t} + de^{(r_p - r_w)t}$$

Calcul des constantes :

$$a = S_0 \left(\frac{1}{r_n} - \frac{r_w}{r_n (r_w - r_p)} \right)$$

$$b = S_0 \left(1 - \frac{1}{r_i - r_n} - \frac{1}{r_n} + \frac{r_w}{r_n (r_w - r_p)} + \frac{r_w}{(r_i + r_w - r_p)(r_i - r_n)} + \frac{r_w}{r_p - r_w - r_n} \left(1 + \frac{1}{r_w - r_p} - \frac{1}{r_i + r_w - r_p} \right) \right)$$

$$c = S_0 \left(\frac{1}{r_i - r_n} - \frac{r_w}{(r_i - r_n)(r_i + r_w - r_p)} \right)$$

$$d = S_0 \left(-\frac{r_w}{r_p - r_w - r_n} \right) \left(1 + \frac{1}{r_w - r_p} - \frac{1}{r_i + r_w - r_p} \right)$$

$$r_p = 10\%$$
, $r_n = 2.5\%$, $S_0 = 1$ $r_w = ?$, $r_i = ?$,

Date de l'effondrement (années) :

r_w/r_i	0%	2%	4%	6%	8%
1%	31,3	55,6	63,6	73,9	95,8
3%	20,3	40,6	47,4	54,6	67,6
5%	16,2	34,6	41,1	47,3	57,8
7%	13,8	31,0	37,4	43,1	52,6
9%	12,2	28,6	35,0	40,4	49,2

Son escroquerie a duré 40 ans

Gains:

 $\gamma = S_0 \left(\frac{r_w}{r_w - r_w} \right) \left(1 + \frac{1}{r_w - r_n} - \frac{1}{r_i + r_w - r_n} \right)$

$$W(t) = -S_0 + \int_0^t \left(r_w S_f(u) - s(u) \right) du$$

$$W(t) = \alpha + \beta e^{r_i t} + \gamma e^{(r_p - r_w)}$$

$$\alpha = S_0 \left(-1 + \frac{1}{r_i} - \frac{r_w}{r_i (r_i + r_w - r_p)} - \frac{r_w}{r_p - r_w} \left(1 + \frac{1}{r_w - r_p} - \frac{1}{r_i + r_w - r_p} \right) \right)$$

$$\beta = S_0 \left(-\frac{1}{r_i} + \frac{r_w}{r_i (r_i + r_w - r_p)} \right)$$

Gain total à l'effondrement :

r_w/r_i	0%	2%	4%	6%	8%
1%	-34,0	-48,9	-17,7	142,0	2213,7
3%	-28,7	-54,7	-55,4	-38,0	90,5
5%	-32,2	-67,5	-76,0	-76,5	-49,5
7%	-45,8	-102,3	-120,9	-133,3	-139,4
9%	-121,8	-185,3	-347,3	-396,9	-469,7

Chaîne de Lettres

Tableau des Constantes

Comportement/Empiriques

Modèle	Seuil	Temps	Proportions	Espérance à
		d'arrêt	à l'arrivée	l'origine
Vente	1/ <i>e</i>	N	50% 0	d ln N
pyramidale	≈ 0.368		25% 1	
pyramidate	1		25% 2 +	,
Markov	$(3-\sqrt{5})$	1.62 <i>N</i>	38.2% 0	
	2		23.6% 1	
	≅ 0.382		38.2% 2	
Branchement		C		$50(m+m^{12}-2)$
		$1-\mathbb{E}(Z_1)$		(1989) 1988)
Ponzi	$r_i > 6\%$ $r_w < 3\%$	~40 ans	12% > 0	$-120S_{0}$
	$r_w < 3\%$		88% < 0	