

CHAPITRE 11.4

Comparaison de normes et espaces produits

Dans tout ce chapitre, \mathbb{K} est un corps égal à \mathbb{R} ou \mathbb{C} , E est un \mathbb{K} -espace vectoriel et n est un entier naturel strictement positif.

I Comparaison de normes

Définition I.1.

Soient N_1 et N_2 deux normes sur E. On dit que N_1 est plus fine que N_2 (ou domine N_2) s'il existe C > 0 tel que pour tout $x \in E$, $N_2(x) \le CN_1(x)$.

Proposition I.2.

Si N_1 est plus fine que N_2 , alors

- 1. Pour tout $(x_n) \in E^{\mathbb{N}}$, $x_n \xrightarrow[n \to +\infty]{} l$ pour $N_1 \Longrightarrow x_n \xrightarrow[n \to +\infty]{} l$ pour N_2 .
- 2. Si F est une partie fermée de E pour N_2 , alors elle l'est pour N_1 .
- 3. Si O est une partie ouverte de E pour N_2 , alors elle l'est pour N_1 .

Preuve

Supposons que N_1 est plus fine que N_2 , soit C>0 tel que pour tout $x\in E, N_2(x)\leq CN_1(x)$

1. Soit (x_n) une suite à valeurs dans E qui converge vers l pour N_1 . On a alors

$$N_2(x_n - l) \le CN_1(x_n - l) \xrightarrow[n \to +\infty]{} 0$$

d'où le résultat voulu.

- 2. Soit F une partie fermée de E pour N_2 . Soit (x_n) une suite à valeurs dans F convergente pour N_1 vers $x \in E$. (x_n) converge alors pour N_2 vers x. F étant fermé pour N_2 , on a $x \in F$ et alors F est fermé pour N_1 .
- 3. Si O est ouvert pour N_2 , alors $E \setminus O$ est fermé pour N_1 donc pour N_2 et finalement O est ouvert pour N_1 .

Définition I.3.

On dit que deux normes N_1 et N_2 sont équivalentes lorsque N_1 est plus fine que N_2 et N_2 est plus fine que N_1 . Dans ce cas, on note $N_1 \sim N_2$.

Proposition I.4.

Soit N_1 et N_2 deux normes équivalentes.

- 1. Les suites convergentes pour N_1 sont exactement les suites convergentes pour N_2 .
- 2. Les ouverts (resp. fermés) pour N_1 sont exactement les ouverts (resp. fermés) pour N_2 .
- 3. Les fonctions continues pour N_1 sont exactement les fonctions continues pour N_2 .
- 4. Les application lipschitziennes pour N_1 sont exactement les applications lipschitziennes pour N_2 , mais le rapport de lipschitzianité ne reste plus le même quand on passe d'une norme à l'autre.

Exemple : dans le cas où $E = \mathbb{K}^n$, les normes $\|.\|_{\infty}$, $\|.\|_1$ et $\|.\|_2$ sont équivalentes. En effet, on a pour tout $x \in E$

- $\rightarrow \frac{1}{n} \|x\|_1 \le \|x\|_{\infty} \le \|x\|_1, \text{ donc } \|.\|_1 \sim \|.\|_{\infty}.$
- $\to \|x\|_2 \le \|x\|_1 \le \sqrt{n} \|x\|_2, \, \mathrm{donc} \, \|.\|_2 \sim \|.\|_1.$
- → Par transitivité, ces trois normes sont deux à deux équivalentes.

Proposition I.5.

Lorsque E est de dimension finie, alors toutes les normes sur E sont équivalentes.

Preuve : la preuve de ce résultat sera faite dans une partie ultérieure de ce cours, car nous n'avons pas encore exposé les outils nécessaires pour le montrer.

Exemple 1 : Dans le cas où $E = \mathcal{C}([a,b],\mathbb{R})$ avec a < b, alors $\|.\|_2$ est plus fine que $\|.\|_1$ et $\|.\|_\infty$ est plus fine que $\|.\|_2$, mais parmi ces trois normes, il n'y en a aucune qui est équivalente à une autre.

- $\rightarrow \text{ On a pour tout } f \in \mathcal{C}([a,b],\mathbb{R}), \, \|f\|_1 \leq \sqrt{b-a} \, \|f\|_2 \leq (b-a) \, \|f\|_\infty.$
- → Les inégalités dans le sens contraire sont toutes fausses en général. En effet, si on considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}=(x\longmapsto x^n)_{n\in\mathbb{N}}$ de [0,1] dans \mathbb{R} , alors on a $f_n\xrightarrow[n\to+\infty]{}0$ pour $\|.\|_1$ et $\|.\|_2$, mais $\|f_n\|_{\infty}=1$ pour tout n, donc (f_n) ne tend pas vers 0 pour $\|.\|_{\infty}$.

Exemple 2 : On se place dans le cas où $E = \mathcal{C}^1([0,1],\mathbb{R})$ et on considère la norme $\|.\|$ telle que pour tout $f \in E$, $\|f\| = |f(0)| + \int_0^1 |f'(x)| dx$.

 $\rightarrow \|.\|$ est plus fine que $\|.\|_{\infty}$. En effet, on a pour tout $f \in E$ et $x \in [a, b]$,

$$|f(x)| = \left| f(0) + \int_0^x f'(t)dt \right| \le |f(0)| + \int_0^x |f'(t)| dt \le |f(0)| + \int_0^1 |f'(t)| dt = ||f||$$

Ce qui entraine $||f||_{\infty} \leq ||f||$.

- \to $\|.\|_{\infty}$ n'est pas plus fine que $\|.\|$. En effet, si on considère la suite de fonctions $(f_n)_{n\in\mathbb{N}} = (x \mapsto \frac{1}{n}\sin(n\pi x))$, on trouve
 - $\bullet \quad ||f_n||_{\infty} = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$
 - Pour tout n, $||f_n|| = \int_0^1 |\sin(n\pi t)| dt \ge \int_0^1 \sin(n\pi t)^2 dt \ge \frac{1}{2}$ et donc $||f_n||$ ne tend pas vers 0.

CPGE paradise

Exercice I.6.

On reprend les notations de l'exemple précédent. Soit $f \in E$. Montrer que

$$\int_0^1 f(t) \left| \sin(nt) \right| dt \xrightarrow[n \to +\infty]{} \frac{2}{\pi} \int_0^1 f(t) dt$$

Exercice I.7.

On pose $E = \mathbb{R}_n[X]$. Comparer les normes suivantes sur E, telles que pour tout P = $\sum_{k=0}^{n} a_k X^k \in E$

$$\to ||P||_0 = \max(|a_0|, \dots, |a_n|)$$

$$\to \|P\|_{\infty} = \sup_{x \in [0,1]} |P(x)|$$

\mathbf{II} Espaces produits

Soit $p \in \mathbb{N}^*$. On consdière p espaces métriques E_1, \ldots, E_p munis respectivement des distances d_1, \ldots, d_p et on pose $E = E_1 \times \cdots \times E_p$. On définit pour tout $i \in [1, p]$ la i-ème projection canonique

$$\pi_i: \begin{cases} E_1 \times \cdots \times E_p & \longrightarrow E_i \\ (x_1, \dots, x_p) & \longmapsto x_i \end{cases}$$

Remarque préliminaire : pour tout $i \in [1, p]$, si A_i est une partie de E_i , alors

$$\pi_i^{-1}(A_i) = E_1 \times \dots \times E_{i-1} \times A_i \times E_{i+1} \times \dots \times E_p$$

1. Métrique produit

On munit E de la distance d définie par

$$\forall (x_1, \dots, x_p), (y_1, \dots, y_p) \in E, \max_{i \in [1;p]} d_i(x_i, y_i)$$

Remarque: pour tout $x = (x_1, \ldots, x_p) \in E$ et $\varepsilon > 0$

$$B_d(x,\varepsilon) = \{(y_1,\ldots,y_p) \in E, \ \forall i \in [1,p], d_i(x_i,y_i) < \varepsilon\} = B_{d_1}(x_1,\varepsilon) \times \cdots \times B_{d_p}(x_p,\varepsilon)$$

Vocabulaire: on appelle pavé ouvert tout produit de la forme $\omega_1 \times \cdots \times \omega_p$ avec pour tout $i \in [1; p]$, ω_i un ouvert de E_i .

Proposition II.1.

- 1. Tout pavé ouvert est ouvert dans E.
- 2. Tout ouvert de E est réunion de pavés ouverts.

Preuve

- 1. Soit $\Omega = \omega_1 \times \cdots \times \omega_p$ un pavé ouvert, soit $x = (x_1, \dots, x_p) \in \Omega$. On a pour tout $i \in [1; p]$, il existe $\varepsilon_i > 0$ tel que $B_{d_i}(x_i, \varepsilon_i) \subset \omega_i$. On pose alors $\varepsilon = \min_{i \in [1; p]} \varepsilon_i > 0$. Le choix de ε nous permet d'affirmer que $B(x, \varepsilon) \subset B_{d_1}(x_1, \varepsilon_1) \times \cdots \times B_{d_p}(x_p, \varepsilon_p) \subset \Omega$ donc Ω est ouvert.
- 2. Soit Ω un ouvert de E. Pour tout $a \in O$, il existe $\varepsilon_a > 0$ tel que $B(a, \varepsilon_a) \subset \Omega$. On peut alors écrire $\Omega = \bigcup_{a \in \Omega} B(a, \varepsilon_a)$. Une boule ouverte de E est par définition un pavé ouvert, donc Ω est bien une union de pavés ouverts.

Proposition II.2.

Soit F_1, \ldots, F_p des parties de E_1, \ldots, E_p . Si pour tout $i \in [1; p]$, F_i est fermé dans E_i , alors $F = F_1 \times \cdots \times F_p$ est fermé dans E.

Preuve : Commecons par remarquer que $F = F_1 \times \cdots \times F_p = \bigcap_{i=1}^p G_i$ avec pour tout $i \in [1; p]$,

$$G_i = E_1 \times \cdots \times E_{i-1} \times F_i \times E_{i+1} \times \cdots \times E_p$$

Or on a pour tout $i \in [1; p]$,

$$E \setminus G_i = E_1 \times \cdots \times E_{i-1} \times (E_i \setminus F_i) \times E_{i+1} \times \cdots \times E_p$$

 $E \setminus G_i$ est un produit de d'ouverts, il est donc ouvert et alors G_i est fermé. Finalement, on en déduit que F est intersection de fermés, il est donc fermé.

Exemple: placons nous dans le cas où $E = \mathbb{R}^p$.

- \rightarrow La distance associée à \mathbb{R}^p est la distance induite par $\|.\|_{\infty}$.
- \rightarrow Pour tout $x = (x_1, \dots, x_p) \in \mathbb{R}^p$ et $\varepsilon > 0$, $B(x, \varepsilon) =]x_1 \varepsilon, x_1 + \varepsilon[\times \dots \times]x_p \varepsilon, x_p + \varepsilon[$.
- \to Les pavés ouverts s'écrivent sous forme de $\omega_1 \times \cdots \times \omega_p$ avec pour tout $i \in [1; p], \omega_i$ un ouvert de \mathbb{R} .
- \rightarrow Tout ouvert de \mathbb{R}^p est réunion d'ensembles de la forme $]x_1 \varepsilon, x_1 + \varepsilon[\times \cdots \times]x_p \varepsilon, x_p + \varepsilon[$.

Proposition II.3.

- 1. Pour tout $k \in [1; p]$, π_k est 1-lipschitzienne.
- 2. Pour tout $k \in [1; p]$, si Ω est un ouvert de E, $\pi_k(\Omega)$ est ouvert.

Preuve: soit $k \in [1; p]$.

- 1. Il suffit d'écrire la définition de la 1-lipschitzianité de π_k . En effet, on a pour tous $x,y \in E$, $d_k(\pi_k(x),\pi_k(y))=d_k(x_k,y_k)\leq d(x,y)$.
- 2. Soit Ω un ouvert de E. Soit $a=(a_1,\ldots,a_p)\in\Omega$ et $\varepsilon>0$ tel que $B(a,\varepsilon)\subset\Omega$. On a alors $B_{d_k}(a_k,\varepsilon)=\pi_k(B(a,\varepsilon))\subset\pi_k(\Omega)$, donc $\pi_k(\Omega)$ est ouvert.

Attention : si F est un fermé de E, sa projection $\pi_k(F)$ avec $k \in [1; p]$ n'est pas forcément un fermé. En effet, dans le cas où $E = \mathbb{R}^2$, on peut considérer $F = \{(x, y) \in \mathbb{R}^2, xy = 1\}$ qui est fermé car l'image réciproque du fermé $\{1\}$ par l'application continue $(x, y) \longmapsto xy$, mais $\pi_1(F) = \mathbb{R}^*$ n'est pas fermé.

CPGE paradise

2. Fonctions à valeurs dans un espace produit

Proposition II.4.

Soit $(x_n)_{n\in\mathbb{N}}=(x_{n,1},\ldots,x_{n,p})\in E^{\mathbb{N}}$ et $x=(x_1,\ldots,x_p)\in E$. Les propositions suivantes sont équivalentes.

1.
$$x_n \xrightarrow[n \to +\infty]{} x$$

1.
$$x_n \xrightarrow[n \to +\infty]{} x$$

2. $\forall i \in [1; p], x_{n,i} \xrightarrow[n \to +\infty]{} x_i$

Preuve

 $(1) \Rightarrow (2)$ Si $x_n \xrightarrow[n \to +\infty]{} x$, alors pour tout $i \in [1; p]$, par continuité de π_i (π_i est 1-lipschitzienne donc continue)

$$x_{n,i} = \pi_i(x_n) \xrightarrow[n \to +\infty]{} \pi_i(x) = x_i$$

 $(2) \Rightarrow (1)$ Il suffit d'écrire la définition de la distance

$$d(x_n, x) = \max_{i \in [1, p]} d_i(x_{n,i}, x_i) \xrightarrow[n \to +\infty]{} 0$$

Proposition II.5.

Soit A un ensemble, f une fonction de A dans E et $a \in \overline{A}$. On pose pour tout $x \in A$, $f(x) = (f_1(x), \dots, f_p(x))$ avec pour tout $i \in [1, p]$, f_i une fonction de A dans E_i . On a alors équivalence entre les points suivants

- 1. f admet une limite $l = (l_1, \ldots, l_p)$ en a.
- 2. Pour tout $i \in [1; p]$, f_i admet la limite l_i en a.

Preuve : la preuve se fait d'une manière identique à celle pour les suites et est donc laissée comme exercice au lecteur.

Proposition II.6.

On reprend les notations précédentes et on considère cette fois-ci que $a \in A$. la propriété précédente implique l'équivalence entre les deux points suivants

- 1. f est continue en a.
- 2. Pour tout $i \in [1; p]$, f_i est continue en a_i .

3. Fonctions d'un espace produit

Dans cette partie, on considère Y un ensemble et pour tout $f \in Y^E$, $i \in [1; p]$ et $a \in E$, on désigne par i-ème application partielle de f en a l'application

$$f_{a,i}:$$

$$\begin{cases}
E_i & \longrightarrow Y \\
x & \longmapsto f(a_1,\ldots,a_{i-1},x,a_{i+1},\ldots,a_p)
\end{cases}$$

Proposition II.7.

Soit $f: E \longrightarrow Y$ et $a \in E$ une application. Si f est continue, alors ses toutes se sapplications partielles en a sont continues.

Preuve : considèrons pour tout $i \in [1, p]$, l'application

$$j_{a,i}:$$

$$\begin{cases} E_i & \longrightarrow E \\ x & \longmapsto (a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_p) \end{cases}$$

Cette application est une isométrie, elle est donc continue. Or on a pour tout $i \in [1; p]$, $f_{a,i} = f \circ j_{a,i}$. $f_{a,i}$ est composition de fonctions continues, elle est donc continue.

Définition II.8.

On considère le cas particulier où pour tout $i \in [1; p]$, E_i est un intervalle ouvert de \mathbb{R} et Y est un espace vectoriel normé. Pour tout $i \in [1; p]$, on appelle i-ème dérivée partielle de f lorsqu'elle existe, l'application suivante

$$\frac{\partial f}{\partial x_i} : \begin{cases} E & \longrightarrow Y \\ x & \longmapsto \lim_{t_i \to x_i} \frac{f_{x,i}(t_i) - f_{x,i}(x_i)}{t_i - x_i} \end{cases}$$

Cette dernière associe un réel x à la dérivée de la i-ème application partielle de f en x au point x_i .

Vocabulaire : une fonction de E vers Y continue, qui admet des dérivées partielles continues est dite dans C^1 .

Attention : la continuité des applications partielles de f n'implique pas la continuité de f. En effet, il suffit de considérer l'application suivante

$$f: \begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto \begin{cases} \frac{xy}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Les applications partielles de f en tout point de R^2 sont continues sur \mathbb{R} , mais f n'est pas continue en (0,0), car en considèrant la suite qui tends vers 0, $((\frac{1}{n},\frac{1}{n}))_{n\in\mathbb{N}^*}$ on voit que pour tout $n\in\mathbb{N}^*$ $f(\frac{1}{n},\frac{1}{n})=\frac{1}{2}$ et ne tend donc pas vers 0, ce qui fait que f n'est pas continue en (0,0).

Exercice II.9.

Soit f une application de \mathbb{R}^2 dans \mathbb{R} qui admet des applications partielles continues en tout point de \mathbb{R}^2 . Montrer que f est limite simple d'une suite de fonctions continues.

4. Polynômes à plusieurs indeterminées

Dans cette partie, pour tout $\alpha \in \mathbb{N}^n$, on note $\alpha_1, \ldots, \alpha_n$ ses coordonées. On appellera tout élément $\alpha \in \mathbb{N}^n$ un multi-indice.

Définition II.10.

Soit \mathbb{K} un corps. On pose $\mathbb{K}[X_1,\ldots,X_n]$ l'ensemble des sommes de la forme

$$P(X_1,\ldots,X_n) = \sum_{(\alpha_1,\ldots,\alpha_n)\in A} a_{\alpha_1,\ldots,\alpha_n} X_1^{\alpha_1} \ldots X_n^{\alpha_n}$$

Avec A une partie finie de \mathbb{N}^n . Dans toute la suite de cette partie, on fixe $P \in \mathbb{K}[X_1, \dots, X_n]$.

Remarque: en première année, les polynômes ont étés vus comme des suites stationnaires en 0. De la même manière, on peut voir les polynômes de $\mathbb{K}[X_1,\ldots,X_n]$ comme des suites à valeurs dans \mathbb{K} indexées par \mathbb{N}^n et dont le nombre de termes non nuls est fini. Ici par exemple, on se limite dans la somme aux indices $(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n$ tels que $a_{\alpha_1,\ldots,\alpha_n}\neq 0$, mais sachant qu'il y a un nombre fini de coefficients non nuls, on aurait pu écrire

$$P(X_1,\ldots,X_n) = \sum_{(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n} a_{\alpha_1,\ldots,\alpha_n} X_1^{\alpha_1} \ldots X_n^{\alpha_n}$$

Vocabulaire: Soit $(\alpha_1, \ldots, \alpha_n) \in A$.

- $\rightarrow a_{\alpha_1,\dots,\alpha_n}$ est un coeffcient de P.
- $\to X_1^{\alpha_1} \dots X_n^{\alpha_n}$ est un monôme.
- \rightarrow Le degré total du monôme $X_1^{\alpha_1} \dots X_n^{\alpha_n}$ est $\alpha_1 + \dots + \alpha_n$.
- \rightarrow Pour tout $i \in [1; n]$, le degré partiel du monôme $X_1^{\alpha_1} \dots X_n^{\alpha_n}$ en X_i est α_i .
- \rightarrow Le degré de P est défini par deg $P = \max_{\alpha \in A'} (\alpha_1 + \cdots + \alpha_n)$ avec A' l'ensemble des multi-indices α tels que $a_{\alpha} \neq 0$.

Définition II.11.

Soit $d \in \mathbb{N}$. On dit que P est homogène de degré d si

$$\forall (\alpha_1, \dots, \alpha_n) \in A, \ a_{\alpha_1, \dots, \alpha_n} \neq 0 \Longrightarrow \alpha_1 + \dots + \alpha_n = d$$

L'ensemble des polynômes homogènes de degré d est noté $H_d(X_1, \ldots, X_n)$.

Proposition II.12.

Soit
$$P = \sum_{(\alpha_1,\dots,\alpha_n)\in A} a_{\alpha_1,\dots,\alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n}$$
 et $Q = \sum_{(\alpha_1,\dots,\alpha_n)\in B} b_{\alpha_1,\dots,\alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n}$ deux éléments de

$$\mathbb{K}[X_1, \dots, X_n]. \text{ On pose } C = A \cup B.$$

$$1. P + Q = \sum_{(\alpha_1, \dots, \alpha_n) \in C} (a_{\alpha_1, \dots, \alpha_n} + b_{\alpha_1, \dots, \alpha_n}) X_1^{\alpha_1} \dots X_n^{\alpha_n}$$

2.
$$P.Q = \sum_{(\alpha,\beta)\in A\times B} a_{\alpha}b_{\beta}X_1^{\alpha_1+\beta_1}\dots X_n^{\alpha_n+\beta_n}$$

Proposition II.13.

Soit d et d' deux éléments de \mathbb{N} .

- 1. Si $P \in H_d(X_1, ..., X_n)$ et $Q \in H_{d'}(X_1, ..., X_n)$, alors $PQ \in H_{d+d'}(X_1, ..., X_n)$. 2. $\mathbb{K}[X_1, ..., X_n] = \bigoplus_{k \in \mathbb{N}} H_k(X_1, ..., X_n)$ 3. $\mathbb{K}[X_1, ..., X_n]$ est une \mathbb{K} -algèbre commutative unitaire intègre.

Preuve

1. Soit P et Q deux éléments appartenant respectivement à $H_d(X_1,\ldots,X_n)$ et $H_{d'}(X_1,\ldots,X_n)$. Soit A (resp. B) l'ensemble des multi-indices α (resp. β) tels que $a_{\alpha} \neq 0$ (resp. $b_{\beta} \neq 0$). On a alors

$$P = \sum_{(\alpha_1, \dots, \alpha_n) \in A} a_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n} \text{ et } Q = \sum_{(\alpha_1, \dots, \alpha_n) \in B} b_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n}$$

On a

$$PQ = \sum_{(\alpha,\beta) \in A \times B} a_{\alpha} b_{\beta} X_1^{\alpha_1 + \beta_1} \dots X_n^{\alpha_n + \beta_n}$$

et pour tout $(\alpha, \beta) \in A \times B$, $\alpha_1 + \beta_1 + \dots + \alpha_n + \beta_n = d + d'$, donc $PQ \in H_{d+d'}(X_1, \dots, X_n)$.

2. Soit $P \in \mathbb{K}[X_1, \dots, X_n]$. Il suffit de diviser la somme de P selon le degré de chaque monome. En effet, on a

$$P = \sum_{(\alpha_1, \dots, \alpha_n) \in A} a_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n} = \sum_{d=0}^{\deg P} \sum_{\substack{(\alpha_1, \dots, \alpha_n) \in A \\ \alpha_1 + \dots + \alpha_n = d}} a_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n}$$

L'unicité de cette écriture découle du fait qu'un polynôme nul est nécessairement à coefficients nuls, on a donc bien $P \in \bigoplus_{k \in \mathbb{N}} H_k(X_1, \dots, X_n)$, d'où le résultat voulu.

3. Le fait que $\mathbb{K}[X_1,\ldots,X_n]$ soit une algèbre commutative ne présente pas de difficulté majeure, nous allons donc uniquement montrer que cette algèbre est intègre. Soit $P, Q \in \mathbb{K}[X_1, \dots, X_n] \setminus \{0\}$. On pose

$$P = \sum_{(\alpha_1, \dots, \alpha_n) \in A} a_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n} \text{ et } Q = \sum_{(\alpha_1, \dots, \alpha_n) \in B} b_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n}$$

Posons aussi

$$PQ = \sum_{(\alpha_1, \dots, \alpha_n) \in C} c_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n}$$

Considèrons $\alpha, \beta \in \mathbb{N}^n$ maximaux pour l'ordre lexicographique tels que $a_{\alpha} \neq 0$ et $b_{\beta} \neq 0$. Le coefficient devant $X^{\alpha_1+\beta_1} \dots X^{\alpha_n+\beta_n}$ est $a_{\alpha}b_{\beta} = c_{\alpha+\beta}$ et $\alpha+\beta$ est le multi-indice maximal pour l'ordre lexicographique vérifiant $c_{\alpha+\beta} \neq 0$. PQ admet donc un coefficient non nul ce qui nous permet de déduire qu'il est non nul, d'où l'intégrité de $\mathbb{K}[X_1,\ldots,X_n]$.

Définition II.14.

Soit $P = \sum_{(\alpha_1,\dots,\alpha_n)\in A} a_{\alpha_1,\dots,\alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n}$ un élément de $\mathbb{K}[X_1,\dots,X_n]$.

On appelle fonction polynôme associée à ${\cal P}$ la fonction

$$\tilde{P}: \begin{cases} \mathbb{K}^n & \longrightarrow \mathbb{K} \\ (x_1, \dots, x_p) & \longmapsto \sum_{(\alpha_1, \dots, \alpha_n) \in A} a_{\alpha_1, \dots, \alpha_n} x_1^{\alpha_1} \dots x_n^{\alpha_n} \end{cases}$$

Proposition II.15.

Lorsque $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, pour tout $P \in \mathbb{K}[X_1, \dots, X_n]$, \tilde{P} est continue.

Preuve : pour tout $i \in [1; p]$, $\tilde{X}_i = \pi_i$, donc \tilde{X}_i est continue. Pour tout $P \in \mathbb{K}[X_1, \dots, X_n]$, la fonction \tilde{P} est produit et combinaison linéaire des fonctions continues \tilde{X}_i avec $i \in [1; n]$, elle est donc continue.

Proposition II.16.

Soient A_1, \ldots, A_n des parties infinies de \mathbb{K} . Soit $P \in \mathbb{K}[X_1, \ldots, X_n]$. Si \tilde{P} s'annule sur $A_1 \times \cdots \times A_n$, alors P est nul.

Preuve : montrons ce résultat par récurrence sur n.

Lorsque n = 1, P est un polynôme à une seule indéterminée qui s'annule en un nombre infini de points, il est donc nul.

Soit $n \geq 2$. Soit $P = \sum_{(\alpha_1, \dots, \alpha_n) \in A} a_{\alpha_1, \dots, \alpha_n} X_1^{\alpha_1} \dots X_n^{\alpha_n} \in \mathbb{K}[X_1, \dots, X_n]$. Réécrivons P de la manière suivante

$$P = \sum_{k=0}^{N} Q_k(X_1, \dots, X_{n-1}) X_n^k$$

avec $N \in \mathbb{N}$ et pour tout $k \in [1; N]$, $Q_k \in \mathbb{K}[X_1, \dots, X_{n-1}]$. Soit $(a_1, \dots, a_{n-1}) \in A_1 \times \dots \times A_{n-1}$. Pour tout $a_n \in A_n$,

$$\tilde{P}(a_1,\ldots,a_{n-1},a_n) = \sum_{k=0}^{N} Q_k(a_1,\ldots,a_{n-1})a_n^k = 0$$

le polynôme $R(Y) = \sum_{k=0}^{N} Q_k(a_1, \dots, a_{n-1}) Y^k$ est nul sur A_n et possède donc une infinité de racines. Ce

polynôme est donc nul. On peut alors affirmer que pour tout $k \in [1; N]$ et $(a_1, \ldots, a_{n-1}) \in A_1 \times \cdots \times A_{n-1}$, $Q_k(a_1, \ldots, a_{n-1}) = 0$. Q_k s'annulle donc sur $A_1 \times \cdots \times A_{n-1}$ et alors par hypothèse de récurrence, pour tout $k \in [1; N]$, $Q_k = 0$ et finalement P = 0.

Exercice II.17.

Montrer que $GL_n(\mathbb{C}) = \{ M \in \mathcal{M}_n(\mathbb{C}), \det M \neq 0 \}$ est ouvert.

Exercice II.18.

Soit $P \in \mathbb{C}[X_1, \dots, X_n] \setminus \{0\}$. Montrer que $Z(P) = \{(x_1, \dots, x_n) \in \mathbb{C}^n, \ \tilde{P}(x_1, \dots, x_n) = 0\}$ est fermé d'intérieur vide.

Exercice II.19.

Soit $P\in\mathbb{C}[X,Y]$ non consant. Montrer que Z(P) est infini.

Correction de l'exercice I.6:

Commencons démontrer le lemme suivant.

Lemme II.20.

Soit f une fonction continue et g une fonction de signe constant sur [a,b] non identiquement nulle. Il existe $c \in [a,b]$ tel que

$$\int_{a}^{b} f(t)g(t)dt = f(c)\int_{a}^{b} g(t)dt$$

Preuve : on suppose sans perte de généralité que g est positive. On a alors $\int_a^b g(t)dt > 0$. Soit $\alpha, \beta \in [a, b]$ telle que $f(\alpha) = \inf_{t \in [a,b]} f(t)$ et $f(\beta) = \sup_{t \in [a,b]} f(t)$. On a

$$\int_{a}^{b} f(\alpha)g(t)dt \le \int_{a}^{b} f(t)g(t)dt \le \int_{a}^{b} f(\beta)g(t)dt$$

et alors

$$f(\alpha) \le \frac{\int_a^b f(t)g(t)dt}{\int_a^b g(t)dt} \le f(\beta) \ (*)$$

f étant continue, le théorème des valeurs intermédiraire nous permet d'affirmer l'existence d'un réel $c \in [a,b]$ tel que

$$\frac{\int_{a}^{b} f(t)g(t)dt}{\int_{a}^{b} g(t)dt} = f(c)$$

d'où le résultat voulu.

Remarque : l'inégalité (*) est en général fausse lorsque g n'est pas de signe constant. Montrons à présent que l'intégrale de l'exercice converge vers la quantitée voulue. Soit $n \in \mathbb{N}^*$, on a

$$\int_{0}^{1} f(t) \left| \sin(nt) \right| dt = \sum_{k=0}^{\lfloor \frac{n}{2\pi} \rfloor - 1} \int_{\frac{2k\pi}{n}}^{\frac{(2k+1)\pi}{n}} f(t) \sin(nt) dt - \int_{\frac{(2k+1)\pi}{n}}^{\frac{(2k+2)\pi}{n}} f(t) \sin(nt) dt + \int_{\lfloor \frac{n}{2\pi} \rfloor \frac{2\pi}{n}}^{1} f(t) \left| \sin(nt) \right| dt$$

En appliquant le lemme précédent sur les deux premières intégrales ci-dessus, on peut affirmer, pour tout $k \in [0; \lfloor \frac{n}{2\pi} \rfloor - 1]$ l'existence de $c_{k,n} \in [\frac{2k\pi}{n}, \frac{(2k+1)\pi}{n}]$ et $c'_{k,n} \in [\frac{(2k+1)\pi}{n}, \frac{(2k+2)\pi}{n}]$ tels que

$$\int_{\frac{2k\pi}{n}}^{\frac{(2k+1)\pi}{n}} f(t)\sin(nt)dt = f(c_{k,n})\int_{\frac{2k\pi}{n}}^{\frac{(2k+1)\pi}{n}} \sin(nt)dt = \frac{2}{n}f(c_{k,n})$$

et

$$\int_{\frac{(2k+1)\pi}{n}}^{\frac{(2k+2)\pi}{n}} f(t)\sin(nt) = f(c'_{k,n}) \int_{\frac{(2k+1)\pi}{n}}^{\frac{(2k+2)\pi}{n}} \sin(nt) = -\frac{2}{n} f(c'_{k,n})$$

On a alors, en posant $\tilde{c}_{k,n}=c_{\frac{k}{2},n}$ si k pair et $\tilde{c}_{k,n}=c'_{\frac{k-1}{2},n}$ sinon, on obtient

$$\int_{0}^{1} f(t) |\sin(nt)| dt = \frac{2}{n} \sum_{k=0}^{\lfloor \frac{n}{2\pi} \rfloor - 1} f(c_{k,n}) + \frac{2}{n} \sum_{k=0}^{\lfloor \frac{n}{2\pi} \rfloor - 1} f(c'_{k,n}) + \int_{\lfloor \frac{n}{2\pi} \rfloor \frac{2\pi}{n}}^{1} f(t) |\sin(nt)| dt$$

$$= \frac{2}{\pi} \left(\sum_{k=0}^{2\lfloor \frac{n}{2\pi} \rfloor - 1} \frac{\pi}{n} f(\tilde{c}_{k,n}) \right) + \int_{\lfloor \frac{n}{2\pi} \rfloor \frac{2\pi}{n}}^{1} f(t) |\sin(nt)| dt$$

La somme dans la ligne ci-dessus est une somme de Riemann sur [0,1], donc elle converge vers $\int_0^1 f(t)dt$. De plus $t \longmapsto f(t) |\sin(nt)|$ est bornée uniformément (sa borne supérieure ne dépend pas de n) sur [0,1] et $\lfloor \frac{n}{2\pi} \rfloor \frac{2\pi}{n} \xrightarrow[n \to +\infty]{} 1$, donc

$$\int_{\lfloor \frac{n}{2\pi} \rfloor}^{1} \frac{2\pi}{n} f(t) \left| \sin(nt) \right| dt \xrightarrow[n \to +\infty]{} 0$$

On en déduit donc directement que

$$\int_0^1 f(t) \left| \sin(nt) \right| \xrightarrow[n \to +\infty]{} \frac{2}{\pi} \int_0^1 f(t) dt$$

Correction de l'exercice 2 :

On a pour tout $P = \sum_{k=0}^{n} a_k X^k \in E$,

$$||P||_0 = \max(|a_0|, \dots, |a_n|) \ge \frac{1}{n} \sum_{k=0}^n |a_k| \ge \frac{1}{n} \max(|a_0|, \dots, |a_n|) = \frac{1}{n} ||P||_0$$

donc

$$||P||_0 \ge \frac{1}{n} ||P||_1 \ge \frac{1}{n} ||P||_0$$

et alors $\|.\|_0 \sim \|.\|_1$.

On a aussi

$$||P||_{\infty} \le \sum_{k=0}^{n} |a_k| = ||P||_1$$

 $\mathrm{donc} \ \|.\|_1 \ \mathrm{est} \ \mathrm{plus} \ \mathrm{fine} \ \mathrm{que} \ \|.\|_{\infty}, \ \mathrm{mais} \ \|.\|_{\infty} \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{toujours} \ \mathrm{plus} \ \mathrm{fine} \ \mathrm{que} \ \|.\|_1.$

En effet, si on consisdère la suite le polynôme $P_n = \sum_{k=1}^n (-1)^k k X^{k-1}$, on a pour tout $x \in [0,1]$,

$$\tilde{P}_n(x) = \left(\sum_{k=0}^n -x^k\right)' = \left(x\frac{1 - (-x)^n}{1 + x}\right)'$$

$$= -x\frac{1 - (-x)^n}{(1 + x)^2} + \frac{1 - (-x)^n}{1 + x} - \frac{n(-x)^n}{1 + x}$$

on a alors pour tout $x \in [0, 1]$

$$\left| \tilde{P}_n(x) \right| \le \left| x \frac{1 - (-x)^n}{(1+x)^2} \right| + \left| \frac{1 - (-x)^n}{1+x} \right| + \left| \frac{n(-x)^n}{1+x} \right| \le 2 + 2 + n = n + 4$$

et donc $||P_n||_{\infty} \le n+4$.

On a aussi $\|P_n\|_1 = \sum_{k=1}^n k = \frac{n(n+1)}{2}$, donc s'il exsite C > 0 tel que pour tout $n \in \mathbb{N}$,

 $||P_n||_1 \le C ||P_n||_{\infty}$, alors on aura $\frac{n(n+1)}{2} \le C(n+4)$ ce qui est faux pour n assez grand, d'où le résultat voulu.

Correction de l'exercice 3:

On va approcher f par une suite de fonctions de première application partielle affine par morceaux. Soit $n \in \mathbb{N}^*$. On subdivise \mathbb{R} en la famille d'intervalles $([\frac{k}{n}, \frac{k+1}{n}])_{k \in \mathbb{Z}}$. Pour tout $n \in \mathbb{N}^*$, on définit f_n de la manière suivante : pour tout $(x,y) \in \mathbb{R}^2$ et $k \in \mathbb{Z}$, si $x \in [\frac{k}{n}, \frac{k+1}{n}]$, on pose $x = \frac{k+\varepsilon_{n,x}}{n}$ avec $\varepsilon_{n,x} = nx - |nx| \in [0,1]$. On a alors

$$f_n(x,y) = f\left(\frac{k}{n}, y\right) + \varepsilon_{n,x} \left(f\left(\frac{k+1}{n}, y\right) - f\left(\frac{k}{n}, y\right)\right)$$

Montrons que pour tout $n \in \mathbb{N}^*$, f_n est continue. Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$, soit $k \in \mathbb{Z}$ tel que $x \in [\frac{k}{n}, \frac{k+1}{n}]$.

 \to Cas $x \in]\frac{k}{n}, \frac{k+1}{n}[$ $]\frac{k}{n}, \frac{k+1}{n}[$ étant ouvert, on peut supposer que tous les couples considérés sont dans $]\frac{k}{n}, \frac{k+1}{n}[\times \mathbb{R}]$. On pose alors pour tout $u \in]\frac{k}{n}, \frac{k+1}{n}[$, $u = \frac{k+\varepsilon_{n,u}}{n}$ avec $\varepsilon_{n,u} \in [0,1[$. On a alors, lorsque $(u,v) \longrightarrow (x,y)$, $\varepsilon_{n,u} \longrightarrow \varepsilon_{n,x}$ et par continuité de la seconde application partielle de f

$$f_n(u,v) = f\left(\frac{k}{n},v\right) + \varepsilon_{n,u}\left(f\left(\frac{k+1}{n},v\right) - f\left(\frac{k}{n},v\right)\right)$$

$$\xrightarrow{(u,v)\to(x,y)} f\left(\frac{k}{n},y\right) + \varepsilon_{n,x}\left(f\left(\frac{k+1}{n},y\right) - f\left(\frac{k}{n},y\right)\right) = f(x,y)$$

donc f_n est continue en (x, y)

 $\rightarrow \operatorname{Cas} x = \frac{k}{n}$

Étudions séparément la continuité à droite et à gauche.

• Continuité pour u à droite de $\frac{k}{n}$ Lorsque $(u,v) \in \left[\frac{k}{n}, \frac{k+1}{n}\right] \times \mathbb{R}$, si $(u,v) \longrightarrow \left(\frac{k}{n},y\right)$, alors $\varepsilon_{n,u} \longrightarrow 0$ et $f\left(\frac{k+1}{n},v\right) - f\left(\frac{k}{n},v\right)$ reste bornée. On a peut donc affirmer que

$$f_n(u,v) = f\left(\frac{k}{n},v\right) + \varepsilon_{n,u}\left(f\left(\frac{k+1}{n},v\right) - f\left(\frac{k}{n},v\right)\right) \xrightarrow[(u,v)\to(x,y)]{} f\left(\frac{k}{n},y\right)$$

d'où la continuité de f_n à gauche de x.

• Continuité pour u à gauche de $\frac{k}{n}$ Lorsque $(u,v) \in]\frac{k-1}{n}, \frac{k}{n}] \times \mathbb{R}$, si $(u,v) \longrightarrow (\frac{k}{n},y)$, alors $\varepsilon_{n,u} \longrightarrow 1$ et

$$f_n(u,v) = f\left(\frac{k-1}{n},v\right) + \varepsilon_{n,u}\left(f\left(\frac{k}{n},v\right) - f\left(\frac{k-1}{n},v\right)\right) \xrightarrow[(u,v)\to(x,y)]{} f\left(\frac{k}{n},y\right)$$

d'où la continuité à gauche en $\frac{k}{n}$

On en déduit donc que pour tout n, f_n est continue sur \mathbb{R}^2 . Il reste maintenant à montrer que f_n converge simplement vers f.

Soit $(x,y) \in \mathbb{R}^2$. On a $\varepsilon_{n,x} \in [0,1[$ et le terme $f\left(\frac{k+1}{n},y\right) - f\left(\frac{k}{n},y\right) \xrightarrow[n \to +\infty]{} 0$, car la première application de f est continue. On a alors

$$f_n(x,y) = f\left(\frac{k}{n},y\right) + \varepsilon_{n,x}\left(f\left(\frac{k+1}{n},y\right) - f\left(\frac{k}{n},y\right)\right) \xrightarrow[n \to +\infty]{} f(x,y)$$

CPGE paradise

D'où la résultat voulu.

Correction de l'exercice 4:

On a pour tout $M = (m_{i,j})_{i,j \in [1;n]} \in \mathcal{M}_n(\mathbb{C})$

$$\det M = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n m_{i,\sigma(i)}$$

L'application det est alors polynômiale et donc continue. Or $GL_n(\mathbb{C}) = \det^{-1}(\mathbb{R}^*)$, il s'agit de l'image réciproque d'un ouvert par une application continue, c'est donc un ouvert.

Correction de l'exercice 5 :

On a $Z(P) = \tilde{P}^{-1}(\{0\})$, il s'agit de l'image réciproque d'un fermé par une application continue (car polnyômiale), c'est donc un fermé.

Supposons que Z(P) n'est pas d'intérieur vide. Il existe alors $\varepsilon > 0$ et $x = (x_1, \ldots, x_n) \in Z(P)$ tel que $B(x, \varepsilon) \subset Z(P)$. P s'annule alors sur $B(x, \varepsilon) = B_{d_1}(x_1, \varepsilon) \times \cdots \times B_{d_n}(x_n, \varepsilon)$. Pour tout $i \in [1; n]$, $B_{d_i}(x_i, \varepsilon)$ est infinie. P s'annule sur le produit d'ensembles infinis, il est donc nul ce qui est absurde. On en déduit donc que Z(P) est bien fermé d'intérieur vide.

Correction de l'exercice 6 :

On peut écrire P de la manière suivante

$$P(X,Y) = \sum_{k=0}^{N} Q_k(Y)X^k$$

avec $Q_N \neq 0$.

 \rightarrow Cas N=0

Lorsque N=0, alors Q_0 est nécessairement non nul et admet au moins une racine qu'on note a. On a alors pour tout $x \in \mathbb{C}$, $\tilde{P}(x,a)=0$ ce qui implique que $\mathbb{C} \times \{a\} \subset Z(P)$. Z(P) est donc infini.

 \rightarrow Cas N > 1

 $A = \{a \in \mathbb{C}, Q_N(a) \neq 0\}$ est infini. soit $a \in A$. $x \longmapsto \tilde{P}(x, a)$ est une fonction polynômiale de degré N, elle admet donc au moins une racine b et donc $(a, b) \in Z(P)$. A étant infini, on peut construire une infinité de couples d'élèments distincts de Z(P), Z(P) est alors bien infini.

* *

Document compilé par Omar Bennouna et révisé par Issam Tauil le 22/12/2021 pour cpge-paradise.com.

Si vous repérez une erreur, ou avez des remarques, prière de me contacter via l'adresse contact@cpge-paradise.com.