

CHAPITRE 11.7 -

Espaces vectoriels normés de dimension finie

Dans tout ce chapitre, \mathbb{K} est égal à \mathbb{R} ou \mathbb{C} . On considère E un \mathbb{K} -espace vectoriel normé de dimension finie $n \geq 1$ et on pose (e_1, \ldots, e_n) une base de cet espace.

I Équivalence des normes

Proposition I.1.

Dans \mathbb{R}^n , toutes les normes sont équivalentes.

Preuve: Soit N une norme sur \mathbb{R}^n . En posant $(\varepsilon_1, \ldots, \varepsilon_n)$ la base canonique de \mathbb{R}^n , on a pour tout $x = x_1 \varepsilon_1 + \cdots + x_n \varepsilon_n \in \mathbb{R}^n$,

$$N(x) = N(x_1 \varepsilon_1 + \dots + x_n \varepsilon_n) \le \sum_{k=1}^n |x_k| N(\varepsilon_k) \le \left(\sum_{k=1}^n N(\varepsilon_k)\right) ||x||_{\infty}$$

Et on a en posant $C = \sum_{k=1}^{n} N(\varepsilon_k)$ pour tout $x, y \in E$

$$|N(x) - N(y)| \le N(x - y) \le C ||x - y||_{\infty}$$

N est donc lipschitzienne et alors continue pour $\|.\|_{\infty}$.

Posons $S = \{x \in \mathbb{R}^n, \|x\|_{\infty} = 1\}$. S est fermé et borné dans un espace de dimension finie pour $\|.\|_{\infty}$, c'est donc un compact d'après la proposition III.2 du chapitre 11.5. N étant continue, elle est bornée sur S et y atteint sa borne inférieure qu'on note α . Il existe alors $y \in S$ pour lequel pour tout $x \in E \setminus \{0\}$,

$$N\left(\frac{x}{\|x\|_{\infty}}\right) \ge N(y) = \alpha > 0$$

et alors

$$\alpha \|x\|_{\infty} \le N(x) \le C \|x\|_{\infty}$$

On en déduit donc que tout norme N sur \mathbb{R}^n est équivalent à $\|.\|_{\infty}$ et que donc par transitivité, toutes les normes sur \mathbb{R}^n sont équivalentes.

Corollaire I.2.

E étant isomorphe à \mathbb{R}^n , toutes les normes sur E sont équivalentes.

Preuve : Soit $\varphi : \mathbb{R}^n \longrightarrow E$ un isomorphisme et soit N_1 et N_2 deux normes sur E. Sur \mathbb{R}^n , les deux normes $N_1 \circ \varphi$ et $N_2 \circ \varphi$ sont équivalentes. Il existe donc $\beta, \gamma > 0$ tels que pour tout x

$$\gamma N_2(\varphi(x)) \le N_1(\varphi(x)) \le \beta N_2(\varphi(x))$$

Or φ étant surjective, pour tout $y \in E$, il existe $x \in E$ tel que $\varphi(x) = y$, on a donc pour tout $y \in E$,

$$\gamma N_2(y) \le N_1(y) \le \beta N_2(y)$$

 N_1 et N_2 sont alors équivalentes.

II Suites et composantes

Proposition II.1.

Soit $(u_p) \in E^{\mathbb{N}}$, on pose pour tout $p \in \mathbb{N}$, $u_p = \sum_{k=1}^n u_{p,k} e_k$ et soit $\|.\|$ une norme sur E. Les propositions suivantes sont équivalentes.

- 1. (u_p) converge pour $\|.\|$.
- 2. $\forall k \in [1; n], \exists l_k \in \mathbb{K}, u_{n,k} \xrightarrow[n \to +\infty]{} l_k.$

Dans ce cas, on a $u_n \xrightarrow[n \to +\infty]{} \sum_{k=1}^n l_k e_k$.

Preuve : On pose pour tout $x = \sum_{k=1}^{n} x_k e_k$, $N(x) = \max_{k \in [\![1,n]\!]} |x_k|$. N est une norme sur E équivalente à $\|.\|$. On a alors

(1)
$$\iff$$
 (u_n) converge vers un certain $l = \sum_{k=1}^n l_k e_k$ pour $\|.\|$
 \iff (u_n) converge vers un certain l pour N
 \iff $\exists l = (l_1, \dots, l_n) \in \mathbb{K}^n, \max_{k \in [\![1:n]\!]} |u_{n,k} - l_k| \xrightarrow[n \to +\infty]{} 0$
 \iff $\exists l \in E, \ \forall k \in [\![1:n]\!], \ u_{n,k} \xrightarrow[n \to +\infty]{} l_k \iff (2)$

Application : Une suite de matrices de $\mathcal{M}_n(\mathbb{R})$ converge si et seulement les suites de ses coefficients convergent.

Proposition II.2.

Soit X un espace métrique et A une partie de X. Soit $a \in \overline{A}$ et l'application

$$f: \begin{cases} A & \longrightarrow E \\ x & \longmapsto \sum_{k=1}^{n} f_k(x)e_k \end{cases}$$

Avec pour tout k, f_k une application de A dans E. Les propositions suivantes sont équivalentes.

- 1. f possède une limite finie en a selon A, notée l.
- 2. Chaque f_k possède une limite finie en a, notée l_k .

Preuve: La preuve est laissé comme exercice au lecteur.

III Compacité et complétude

Théorème (Bolzano Weierstraß) III.1.

Soit (u_p) une suite à valeurs dans E. Si (u_p) est bornée pour $\|.\|$, alors elle admet au moins une valeur d'adhérence.

Preuve : Posons pour tout $x = \sum_{k=1}^{n} x_k e_k \in E$, $N(x) = \max_{k \in [1:n]} |x_k|$.

N étant équivalente à $\|.\|$, donc (u_p) est aussi bornée pour N. Toutes les suites $(u_{p,k})_{p\in\mathbb{N}}$ sont alors bornées. Montrons par récurrence sur r la propriété suivante :

il existe une extractrice φ_r telle que pour tout $i \in [1; r]$, $(u_{\varphi_r(p),i})$ est convergence vers $l_i \in \mathbb{R}$

La propriété pour r=1 est vraie car il s'agit du théorème de Bolzano Weierstraß pour les suites réelles et complexes. Supposons maintenant que la propriété est vraie pour $r \in [1; n-1]$. La suite $(u_{\varphi_r(p),r+1})$ est bornée, il existe alors une extractrice φ telle que $(u_{\varphi_r\circ\varphi(p),r+1})$ converge vers un certain l_{r+1} . On a alors pour tout $i \in [1; r+1]$, $(u_{\varphi_r\circ\varphi(p),i})$ converge vers l_i . La propriété est alors vraie pour r=n ce qui implique que, pour $\|.\|_{\infty}$, $(u_{\varphi_n(p)})$ converge vers $l=\sum_{k=1}^n l_k e_k$ et donc par équivalence des normes N et $\|.\|_{\infty}$, $(u_{\varphi_n(p)})$ converge vers l pour N, d'où le résultat voulu.

Corollaire III.2.

Les propositions suivantes sont vraies. Une partie A de E est compacte si elle est fermée et bornée.

Preuve : Soit $(u_p) \in A^{\mathbb{N}}$. (u_p) est bornée, le théorème précedent nous permet d'affirmer qu'il existe une extractrice φ telle que $u_{\varphi(p)} \xrightarrow[p \to +\infty]{} a \in E$. A étant fermé, on a $a \in A$, d'où la compacité de A.

Proposition III.3.

L'espace vectoriel normé de dimension finie (E, ||.||) est complet.

Preuve: Soit $(u_p) \in E^{\mathbb{N}}$ une suite de Cauchy et $N \in \mathbb{N}$ tel que pour tout $m, n \geq N$,

$$||u_m - u_n|| \le 1$$

On a alors pour tout $n \in \mathbb{N}$,

$$||u_n|| \le \max\{||u_0||, \dots, ||u_{N-1}||, ||u_N|| + 1\}$$

La suite (u_p) est bornée, donc d'après le théorème III.1, elle admet une suite extraite convergente. D'après la remarque à la fin de la page 4 du chapitre 11.5, toute suite de Cauchy admettant une valeur d'adhérence converge, d'où le résultat voulu.

Corollaire III.4.

Soit (u_p) une suite à valeurs dans E.

$$\sum \|u_p\|$$
 converge $\Longrightarrow \sum u_p$ converge

Preuve : Supposons que $\sum ||u_p||$ converge et soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$,

$$\sum_{k=n}^{\infty} \|u_p\| \le \varepsilon$$

On a alors pour tout $m \ge n \ge N$,

$$\left\| \sum_{k=n}^{m} u_k \right\| \le \sum_{k=n}^{m} \|u_k\| \le \varepsilon$$

La suite $(U_n) = \left(\sum_{k=0}^n u_k\right)_{n\in\mathbb{N}}$ est de Cauchy et E est complet, donc elle converge, d'où la convergence de la série $\sum u_p$.

Remarque : La propriété ci-dessus est en particulier vraie pour tout espace vectoriel normé complet.

Proposition III.5.

Soit A une partie fermée de E et $f:A\longrightarrow A.$ Si f vérifie la propriété

$$\exists q \in]0, 1[, \forall x, y \in A, ||f(x) - f(y)|| \le q ||x - y||$$

Alors f possède un unique point fixe dans A.

Preuve

 \rightarrow Unicité Soit l et l' deux éléments de A tels que f(l) = l et f(l') = l'. On alors

$$q ||l - l'|| \ge ||f(l) - f(l')|| = ||l - l'||$$

On a alors nécessairement l = l'.

 \rightarrow Existence Soit $a \in A$. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

On a alors pour tout n > 1,

$$||u_{n+1} - u_n|| = ||f(u_n) - f(u_{n-1})|| \le q ||u_n - u_{n-1}|| \le \dots \le q^n ||u_1 - u_0||$$

On a $q \in]0,1[, \sum_{n \in \mathbb{N}} q^n$ est alors convergence, et par conséquent $\sum_{n \in \mathbb{N}} \|u_{n+1} - u_n\|$ est convergence. E

étant complet, le corollaire III.4 nous permet donc d'affirmer que $\sum_{n\in\mathbb{N}}u_{n+1}-u_n$ est convergente, i.e.

 (u_n) est convergente vers une limite qu'on note l. A est fermé donc $l \in A$ et en passant à la limite dans la relation de récurrence $f(u_n) = u_{n+1}$, on obtient par continuité de f que l = f(l), d'où le résultat voulu.

Remarque : Pour démontrer le résultat ci-dessus, on n'a pas eu besoin du fait que E est de dimension finie. Il suffit que A soit complet.

Proposition III.6.

Si E est un sous espace vectoriel de dimension finie d'un \mathbb{K} -espace vectoriel $(F, \|.\|)$, alors E est fermé.

Preuve: Soit (u_p) une suite à valeurs dans E qui converge vers $a \in F$. E est de dimension finie et (u_p) est convergente donc bornée dans E, il existe donc une extractrice φ telle que $u_{\varphi(p)} \xrightarrow[p \to +\infty]{} b \in E$, or par unicité de la limite, $a = b \in E$, donc E est bien fermé.

Exemple: $\mathbb{R}_n[X]$ est fermé dans $\mathcal{C}([0,1],\mathbb{R})$ muni de la norme $\|.\|_{\infty}$.

Théorème (Théorème de Riesz) III.7.

Soit $(F, \|.\|)$ un espace vectoriel normé. $B_f(0, 1)$ est compacte si et seulement si F est de dimension finie.

Preuve : La preuve sera présentée sous forme d'exercice dans la suite du chapitre.

IV Fonctions polynômes sur \mathbb{K}^n

On rappelle ici que E est un espace vectoriel normé de **dimension finie** muni de la norme $\|.\|_E$ et (e_1, \ldots, e_n) une base de E.

Définition IV.1.

Soit f une application de E dans \mathbb{K} . Soit $\mathcal{E} = (\varepsilon_1, \dots, \varepsilon_n)$ une base de F. On dit que f est polynomiale dans la base \mathcal{E} , lorsqu'il existe une suite $(a_{\alpha})_{\alpha \in \mathbb{N}^n} \in \mathbb{K}^{\mathbb{N}^n}$ avec un nombre fini de termes non nuls telle que pour tout $x = x_1 \varepsilon_1 + \dots + x_n \varepsilon_n \in E$,

$$f(x) = \sum_{(\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n} a_{\alpha_1, \dots, \alpha_n} x_1^{\alpha_1} \dots x_n^{\alpha_n}$$

Proposition IV.2.

Soit F un espace vectoriel normé quelconque.

- 1. Toute application u linéaire de E dans F est continue.
- 2. Toute application f polynomiale dans une base de E à valeurs dans \mathbb{K} est continue.

Preuve

1. soit N une norme sur E définie de la manière suivante

$$\forall x = x_1 e_1 + \dots + x_n e_n \in E, \ N(x) = \sum_{k=1}^n |x_k|$$

On alors pour tout $x = x_1e_1 + \cdots + x_ne_n \in E$,

$$||u(x)||_F = ||x_1u(e_1) + \dots + x_nu(e_n)||_F \le \sum_{k=1}^n |x_i| ||u(e_i)||_F \le CN(x)$$

Avec $C = \max_{k \in [\![1:n]\!]} \|u(e_k)\|_F$. Mais E est de dimension finie, donc N est équivalente à $\|.\|_E$, donc u est continue.

2. Posons pour tout $x = x_1e_1 + \cdots + x_ne_n \in E$,

$$f(x) = \sum_{(\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n} a_{\alpha_1, \dots, \alpha_n} x_1^{\alpha_1} \dots x_n^{\alpha_n}$$

Pour tout $k \in [1; n]$, l'application $x \mapsto x_k$ est continue, et f est somme et produit d'applications de cette forme qui sont toutes continues, donc f est continue.

Corollaire IV.3.

Toute application f multilinéaire de E^p dans un espace vectoriel normé F est continue.

Preuve : Considérons les p éléments de E suivants :

$$x_{1} = x_{1,1}e_{1} + \dots + x_{1,n}e_{n}$$

$$x_{2} = x_{2,1}e_{1} + \dots + x_{2,n}e_{n}$$

$$\vdots$$

$$x_{p} = x_{p,1}e_{1} + \dots + x_{p,n}e_{n}$$

On a alors

$$f(x_1, \dots, x_p) = f\left(\sum_{i_1=1}^n x_{1,i_1} e_{i_1}, \sum_{i_2=1}^n x_{2,i_2} e_{i_2}, \dots, \sum_{i_p=1}^n x_{p,i_p} e_{i_p}\right)$$
$$= \sum_{(i_1, \dots, i_p) \in [1; n]^p} x_{i_1} \dots x_{i_p} f(e_{i_1}, \dots, e_{i_p})$$

f est donc combinaison linéaire et produit d'applications de la forme $(x_1, \ldots, x_p) \longmapsto x_{k,l}$ avec $(k, l) \in [1; p] \times [1; n]$. Toutes ces applications sont continues, donc f est continue.

V Exercices

Exercice V.1.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ de classe \mathcal{C}^n telle que f et $f^{(n)}$ sont bornées. Montrer que pour tout $k \in [1; n-1]$, $f^{(k)}$ est bornée.

Exercice V.2.

Soit $n \in \mathbb{N}^*$. On note $\Omega = \{P \in \mathbb{R}_n[X], \deg P = n \text{ et } P \text{ est scind\'e à racines simples}\}$. Montrer que Ω est ouvert dans $\mathbb{R}_n[X]$.

Exercice V.3.

Soit $(P_k)_{k\in\mathbb{N}}$ une suite à valeurs dans $\mathbb{R}_n[X]$. On suppose que la suite (\tilde{P}_k) de fonctions polynômes associée à (P_k) converge simplement vers $f \in \mathcal{C}([0,1],\mathbb{R})$ sur [0,1]. Montrer que la convergence est uniforme.

Exercice V.4.

Soit F un fermé non vide de l'espace vectoriel normé de dimension finie (E, ||.||) et soit $a \in E$. Montrer qu'il existe $b \in F$ tel que ||a - b|| = d(a, F).

Exercice V.5.

Soit F un sous espace de dimension finie d'un espace vectoriel normé (G, ||.||) de dimension quelconque. Soit $a \in G$. Montrer qu'il existe $b \in F$ tel que ||a - b|| = d(a, F).

Exercice V.6.

Soit K un compact non vide de l'espace euclidien \mathbb{R}^n . Montrer qu'il existe une boule fermée de rayon minimum contenant K et que cette boule est unique.

Exercice V.7.

Soit f une fonction continue de l'espace vectoriel normé de dimension finie $(E, \|.\|)$ dans \mathbb{R} . On suppose que $f(x) \xrightarrow[\|x\| \to +\infty]{} +\infty$. Montrer que f est minorée et qu'il existe $a \in E$ tel que $f(a) = \min_{x \in E} f(x)$.

Exercice V.8.

Ceci est un exercice visant à prouver le théorème III.7 (Théorème de Riesz). Soit $(F, \|.\|)$ un espace vectoriel normé de dimension infinie.

- 1. Soit G un sous-espace vectoriel de F de dimension finie. Montrer qu'il existe $a \in S(0,1)$ tel que $d(a,F) \ge 1$.
- 2. Construire une suite $(a_n) \in S(0,1)^{\mathbb{N}}$ telle que $\forall n \neq m, ||a_n a_m|| \geq 1$.
- 3. Conclure.

Correction de l'exercice V.1. :

f est de classe C^n , on peut alors appliquer l'égalité de Talor-Lagrange à l'ordre n pour f sur [0,1]

$$\forall (x,h) \in \mathbb{R}^+ \times [0,1], \ \exists c_{x,h} \in [0,1], \ f(x+h) - f(x) - \frac{h^n}{n!} f^{(n)}(c_{x,h}) = \underbrace{\sum_{k=1}^{n-1} \frac{f^{(k)}(x)}{k!} h^k}_{P_x(h)}$$

D'après les hypothèses, $(x,h) \longmapsto f(x+h) - f(x) - \frac{h^n}{n!} f^{(n)}(c_{x,h})$ est bornée par un certain M > 0. On alors en posant $g_x : h \longmapsto f(x+h) - f(x) - \frac{h^n}{n!} f^{(n)}(c_{x,h})$, on a par construction, pour tout $x \in \mathbb{R}^+$, $\|g_x\|_{\infty} \leq M$, et alors $\|P_x\|_{\infty} \leq M$. Posons pour tout $P(X) = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}_n[X]$, $N(P) = \max_{k \in [0;n]} |a_k|$. $\mathbb{R}_n[X]$ est de dimension finie, donc toutes les normes y sont équivalentes. En particulier, N et $\|.\|_{\infty}$ sont

équivalentes, ce qui nous permet d'affirmer qu'il existe M' > 0 tel que pour tout $x \in \mathbb{R}^+$, $N(P_x) < M'$. On a donc pour tout

$$x \in \mathbb{R}^+, \ \forall k \in [1; n], \ \left| \frac{f^{(k)}(x)}{k!} \right| < M'$$

Ce qui nous permet d'affirmer que pour tout $k \in [1; n]$, $f^{(k)}$ est bornée.

Correction de l'exercice V.2. :

Soit $P \in \Omega$. P admet n racines distinctes et est scindé à racine simples, il change donc n+1 fois de signe sur \mathbb{R} . Soit $y_1, \ldots, y_{n+1} \in \mathbb{R}$ tels que sans perte de généralité, pour tout $k \in [1; n+1]$, $signe(P(y_k)) = (-1)^k$.

Posons pour tout $Q \in \mathbb{R}_n[X]$, $N(Q) = \sum_{k=1}^{n+1} |Q(y_i)|$. N est bien une norme sur $\mathbb{R}_n[X]$, car elle vérifie

l'inégalité triangulaire, homogène, et pour tout polynôme Q de degré au plus $n, N(Q) = 0 \Longrightarrow Q = 0$. Posons $\varepsilon = \min_{k \in [\![1;n+1]\!]} |P(y_k)|$. Pour tout $Q \in \mathbb{R}_n[X]$, si $N(P-Q) < \frac{\varepsilon}{2}$, alors pour tout $k \in [\![1;n+1]\!]$

$$|Q(y_k) - P(y_k)| < \frac{\varepsilon}{2}$$

i.e.

$$P(y_k) - \frac{\varepsilon}{2} < Q(y_k) < P(y_k) + \frac{\varepsilon}{2}$$

Mais pour tout $k \in [1; n+1], |P(y_k)| \ge \varepsilon$, donc

$$signe\left(P(y_k) + \frac{\varepsilon}{2}\right) = signe\left(P(y_k) - \frac{\varepsilon}{2}\right) = signe(P(y_k))$$

Donc pour tout $k \in [1; n+1]$, $Q(y_k)$ a le même signe que $P(y_k)$. En appliquant le théorème des valeurs intermédiaires sur $[y_k, y_{k+1}]$ pour tout $k \in [1; n]$, on trouve que Q, étant de degré n, admet n racines distinctes et donc est scindé à racines simples. On en déduit donc que $B(P, \varepsilon) \subset \Omega$ et finalement que Ω est ouvert.

Correction de l'exercice V.3. :

Soit x_0, x_1, \ldots, x_n des éléments deux à deux distincts de [0, 1]. Posons pour tout $k \in \mathbb{N}$,

$$P_k(X) = \sum_{i=0}^n a_{k,i} X^i$$

On a alors pour tout $l \in [0; n]$,

$$\sum_{i=1}^{n} a_{k,i} x_l^i \xrightarrow[k \to +\infty]{} f(x_l)$$

i.e.

$$\begin{pmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_{k,0} \\ a_{k,1} \\ \vdots \\ a_{k,n} \end{pmatrix} \xrightarrow[k \to +\infty]{} \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}$$

En posant

$$V = V(x_0, x_1, \dots, x_n) = \begin{pmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{pmatrix}$$

On remarque que V est une matrice de Vandermonde, elle est donc inversible. $X \longmapsto V^{-1}X$ est une application linéaire en dimension finie, elle est donc continue d'après la proposition IV.2. On a alors, en multipliant par V^{-1} et en passant à la limite

$$\begin{pmatrix} a_{k,0} \\ a_{k,1} \\ \vdots \\ a_{k,n} \end{pmatrix} \xrightarrow[k \to +\infty]{} V^{-1} \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix} \tag{*}$$

En posant pour tout $Q(X) = \sum_{i=0}^{n} b_i X^i$, $N(Q) = \sum_{i=0}^{n} |b_i|$, on voit que N est une norme dans l'espace de dimension finie $\mathbb{R}_n[X]$, elle est donc équivalente à $\|.\|_{\infty}: Q \longmapsto \sup_{x \in [0,1]} \tilde{Q}(x)$. D'après $(*), (P_k)_{k \in \mathbb{N}}$ converge aussi pour $\|.\|_{\infty}$.

pour N (chaque coefficient converge) et donc par équivalence des normes, (P_k) converge aussi pour $\|.\|_{\infty}$. (\tilde{P}_k) converge donc uniformément vers une certaine fonction continue dans [0,1] g. Il reste à montrer que f=g. La convergence uniforme implique la convergence simple, donc (\tilde{P}_k) converge simplement vers fet q, et donc par unicité de la limite, f = q.

Remarque : l'espace des fonctions polynômes de degré au plus n étant de dimension finie, il est fermé dans l'espace des fonctions continues sur [0,1]. Cet argument nous permet d'affirmer que (P_k) converge uniformément vers un polynôme de degré au plus n.

Une démonstration plus directe de ce résultat peut être faite de la manière suivante. Soit a_0, \ldots, a_n les limites respectives des suites de coefficients $(a_{k,0})_{k\in\mathbb{N}},\ldots,(a_{k,n})_{k\in\mathbb{N}}$. En posant $P(X)=\sum_{i=0}^n a_iX^i$, on a

$$\|\tilde{P}_k - \tilde{P}\|_{\infty} \le \sum_{i=0}^n |a_{k,i} - a_i| \xrightarrow[k \to +\infty]{} 0$$

Correction de l'exercice V.4. :

Soit R > d(a, F). On a $B_f(a, R) \cap F = K \neq \emptyset$ K est une intersection de deux fermés incluse dans l'ensemble bornée $B_f(a,R)$ en dimension finie, c'est donc une partie compacte de E. On considère la fonction

$$g: \begin{cases} K & \longrightarrow \mathbb{R} \\ x & \longmapsto \|a - x\| \end{cases}$$

(CC) BY-NC-SA

$$g \text{ est continue sur le compact } K, \text{ il y atteint donc son minimum en un élément de } K \text{ qu'on note } b.$$
 Soit $y \in F$,
$$\begin{cases} \text{Si } y \not\in K, \text{ alors } & \|y-a\| > R \geq \|a-b\| \\ \text{Si } y \in K, \text{ alors } & \|y-a\| \geq \|a-b\| \end{cases}$$
 On a donc bien $\|a-b\| = \min_{x \in F} \|a-x\| = d(a,F)$.

Correction de l'exercice V.5. :

Cet exercice se fait d'une manière identique au précédent. Soit R > d(a, F) et $K = B_f(a, R) \cap F$. K est fermé borné inclus dans un espace de dimension finie F, c'est donc un compact. en reprenant les notations de l'exercice précédent, g est continue et donc atteint son minimum sur le compact K en un certain $b \in F$. Avec un raisonnement identique à l'exercice précédent, on peut affirmer que ||a - b|| = d(a, F).

Correction de l'exercice V.6. :

Posons $S_K = \{ \gamma \geq 0, \ \exists a \in \mathbb{R}^n, \ K \subset B_f(a, \gamma) \}$. K est borné, il existe donc une boule fermée contenant K. L'ensemble S_K est alors non vide, minoré par 0. Il admet donc une borne inférieure $r = \inf S_K$. Soit $((a_n, r_n))_{n \in \mathbb{N}}$ une suite à valeurs dans $\mathbb{R}^n \times \mathbb{R}^+$ vérifiant les deux propriétés suivantes

$$\begin{cases} \forall n \in \mathbb{N}, \ K \subset B(a_n, r_n) \\ r_n \xrightarrow[n \to +\infty]{} r \end{cases}$$

D'après les hypothèses, il existe N assez grand tel que pour tout $n \ge N$ on ait $r_n \le r + 1$. Soit $b \in K$. On a pour tout $n \ge N$,

$$||a_n - b|| \le r_n \le r + 1$$

et alors

$$||a_n|| \le r + 1 + ||b||$$

La suite (a_n) est bornée, ce qui nous permet en utilisant le théorème III.1 d'affirmer que (a_n) admet une suite extraite convergente. Quitte à extraire de la suite (a_n) , on suppose qu'elle est convergente vers un certain $a \in \mathbb{R}^n$.

- \rightarrow Pour montrer l'existence de la boule, montrons que $K \subset B_f(a,r)$. On a pour tout $x \in K$ et pour tout $n \in \mathbb{N}$, $||a_n - x|| \le r_n$. En passant à la limite, on obtient $||a - x|| \le r$, i.e. $x \in B_f(a,r)$. On a donc bien que $K \subset B_f(a,r)$.
- \rightarrow Unicité de la boule

On sait que le rayon de la boule est unique car il est défini comme la borne inférieure de S_K , il suffit donc de montrer l'unicité du centre.

Soit $a' \in \mathbb{R}^n$ différent de a tel que $K \subset B_f(a',r)$. Soit $x \in B_f(a,r) \cap B_f(a',r)$, on a

$$2r^{2} \ge \|\underbrace{x-a}_{u}\|^{2} + \|\underbrace{x-a'}_{v}\|^{2} = \frac{1}{2}(\|u+v\|^{2} + \|u-v\|^{2})$$

$$= 2\left(\left\|x - \frac{a+a'}{2}\right\|^{2} + \underbrace{\left\|\frac{a-a'}{2}\right\|^{2}}\right)$$

En posant $b = \frac{a+a'}{2}$, on en déduit

$$||x - b|| \le \sqrt{r^2 - \underbrace{\alpha}_{> 0}} < r$$

Donc $K \subset B_f(b, \sqrt{r^2 - \alpha})$ ce qui est absurde par définition de r, d'où le résultat voulu.

Correction de l'exercice V.7.:

Le fait que $f(x)\xrightarrow[\|x\|\to+\infty]{}+\infty$ se réécrit

$$\forall M > 0 \ \exists R > 0, \ \forall x \in E, \ \|x\| > R \Longrightarrow \|f(x)\| > M$$

Appliquons cette proposition à M = |f(0)| + 1. f est continue sur $B_f(0, R)$ qui est fermé borné en dimension finie donc compact, elle y atteint donc son minimum en un certain $a \in B_f(0, R)$.

Or pour tout $y \in E$

- \rightarrow Si ||y|| > R, f(y) > |f(0)| + 1 > f(a).
- \rightarrow Sinon, par construction, $f(y) \ge f(a)$

Donc f atteint bien son minimum sur E en a.

Correction de l'exercice V.8.: (Preuve du théorème de Riesz)

1. Soit $a_0 \in F \setminus G$. L'exercice V.4 nous permet d'affirmer qu'il existe $b \in G$ tel que

$$||a_0 - b|| = \inf_{x \in G} ||x - a_0|| = d(a_0, F)$$

Posons alors $a = \frac{b-a_0}{\|b-a_0\|} \in S(0,1)$, on a alors pour tout $x \in G$,

$$||x - a|| = ||x - \frac{a_0 - b}{||a_0 - b||}||$$

$$= \frac{1}{d(a_0, G)} ||\underbrace{b + x ||a_0 - b||}_{=y \in G} - a_0||$$

$$= \frac{1}{d(a_0, G)} ||y - a_0|| \ge 1$$

2. Construisons la suite a_n par récurrence, le premier terme a_0 peut être pris quelconque vérifiant $||a_0|| = 1$.

Soit $n \in \mathbb{N}$. Supposons que les termes a_0, \ldots, a_n sont bien définis. Posons $G_n = Vect(a_0, \ldots, a_n)$. D'après la questions précédente, il existe $a_{n+1} \in S(0,1)$ tel que $d(a_{n+1}, G_n) \geq 1$. On a alors

$$\forall m < n, \|a_m - a_{n+1}\| > 1$$

Il est clair que la suite (a_n) telle qu'on l'a définie vérifie

$$\forall m, n \in \mathbb{N}, (n \neq m \Longrightarrow ||a_n - a_m|| \ge 1) \text{ et } \forall n \in \mathbb{N}, ||a_n|| = 1$$

3. Reprenons le théorème III.7. L'énoncé du théorème est le suivant : Si H un espace vectoriel normé, alors on a l'équivalence

H est de dimension finie \iff La boule unité fermée de H est compacte

 \rightarrow (\Leftarrow) nous allons faire cette implication par contraposée. Supposons que H soit de dimension infinie. La question précédente nous permet de considérer une suite $(a_n) \in S(0,1)^{\mathbb{N}}$ telle que

$$\forall m, n \in \mathbb{N}, \ n \neq m \Longrightarrow ||a_n - a_m|| \ge 1$$

Si la boule unité était compacte, on disposerait d'une extractrice φ telle que $(a_{\varphi(n)})$ soit convergente, et alors

$$1 \le \left\| a_{\varphi(n+1)} - a_{\varphi(n)} \right\| \xrightarrow[n \to +\infty]{} 0$$

ce qui est absurde.

 \rightarrow (\Rightarrow) Si H est de dimension finie, alors la boule unité fermée de H est fermé bornée en dimension finie, elle est alors compacte.

Document compilé par Omar Bennouna et révisé par Issam Tauil le 01/03/2022 pour cpge-paradise.com.

Si vous repérez une erreur, ou avez des remarques, prière de me contacter via l'adresse contact@cpge-paradise.com.

