

CHAPITRE 11.8

Connexité

I Généralités

Définition I.1.

Soit (X, d) un espace métrique. Les propositions suivantes sont équivalentes

- 1. Si O_1 et O_2 sont deux ouverts de X tels que $X = O_1 \cup O_2$ et $O_1 \cap O_2 = \emptyset$, alors $O_1 = \emptyset$ ou $O_2 = \emptyset$.
- 2. Si F_1 et F_2 sont deux fermés de X tels que $X = F_1 \cup F_2$ et $F_1 \cap F_2 = \emptyset$, alors $F_1 = \emptyset$ ou $F_2 = \emptyset$.
- 3. Si A est une partie à la fois fermée et ouverte de X, alors A = X ou $A = \emptyset$.
- 4. Si f est une fonction continue de X dans $\{0,1\}$, alors f est constante.

Lorsque l'une de ces propriétés est vérifiée, on dit que X est connexe.

Preuve

- \rightarrow (1) \Rightarrow (2) Soit F_1 et F_2 deux fermés vérifiant $F_2 \cup F_2 = X$ et $F_1 \cap F_2 = \emptyset$, et posons $O_1 = X \setminus F_1$ et $O_2 = X \setminus F_2$. O_1 et O_2 sont ouverts et $O_1 \cup O_2 = X$ et $O_1 \cap O_2 = \emptyset$, donc $O_1 = X$ et $O_2 = \emptyset$ ou $O_1 = \emptyset$ et $O_2 = X$, i.e. $F_1 = X$ et $F_2 = \emptyset$ ou $F_1 = \emptyset$ et $F_2 = X$.
- \rightarrow (2) \Rightarrow (3) Soit A une partie fermée et ouverte de X. $F_1 = A$ et $F_2 = A^c$ vérifient les hypothèses de (2). Donc on a $A = \mathbf{X}$ et $A^c = \emptyset$ ou $A = \emptyset$ et $A^c = X$, d'où le résultat voulu.
- \to (3) \Rightarrow (4) Posons $F_1 = f^{-1}(\{0\})$ et $F_2 = f^{-1}(\{1\})$. F_1 et F_2 sont fermés car il s'agit d'images réciproques de deux fermés par une fonctions continue. De plus, on a $F_1 \cup F_2 = X$ et $F_1 \cap F_2 = \emptyset$. On a alors $F_1 = X$ ou $F_2 = X$, i.e. $f^{-1}(\{0\}) = X$ ou $f^{-1}(\{1\}) = X$. f est alors toujours égale à 0 ou toujours égale à 1. On a donc bien le résultat voulu.
- \rightarrow (4) \Rightarrow (1) Soit O_1 et O_2 deux ouverts vérifiant $O_1 \cup O_2 = X$ et $O_1 \cap O_2 = \emptyset$. On considère l'application de X dans $\{0,1\}$ suivante :

$$f: \begin{cases} X & \longrightarrow \{0, 1\} \\ x & \longmapsto \begin{cases} 0 \text{ si } x \in O_1 \\ 1 \text{ si } x \in O_2 \end{cases} \end{cases}$$

f est continue car O_1 et O_2 sont ouverts, elle est donc constante. On a alors $O_1 = f^{-1}(\{0\}) = \emptyset$ et $O_2 = f^{-1}(\{1\}) = X$ ou $O_1 = f^{-1}(\{0\}) = X$ et $O_2 = f^{-1}(\{1\}) = \emptyset$, ce qui est bien ce qu'on cherchait.

Proposition I.2.

Soit I un ensemble et $(\Omega_i)_{i\in I}$ une partition d'ouverts d'un espace métrique connexe X. Il existe alors au plus un indice i_0 tel que $\Omega_{i_0} \neq \emptyset$.

Preuve: Soit i_0 tel que $\Omega_{i_0} \neq \emptyset$. Posons $\Omega = \bigcup_{i \in I \setminus \{i_0\}} \Omega_i$. On a alors $\Omega_{i_0} \cup \Omega = X$ et $\Omega_{i_0} \cap \Omega = \emptyset$. De plus

 Ω_{i_0} et Ω sont ouverts (car c'est l'union d'ouverts), donc X étant connexe, on a nécessairement $\Omega = \emptyset$, i.e. $\forall i \neq i_0, \ \Omega_i = \emptyset$.

Proposition I.3.

Si A est une partie connexe de l'espace métrique X alors \overline{A} aussi.

Preuve : Soit $f : \overline{A} \longrightarrow \{0,1\}$ une application continue. f est continue sur A par restriction et A est connexe, donc f est constante sur A. \overline{A} est dense dans A donc f étant continue, elle est aussi constante sur \overline{A} , donc \overline{A} est bien connexe.

Remarque : Attention, si A est connexe, \mathring{A} ne l'est pas forcément!

Proposition I.4.

Soit X et Y deux espaces métriques et $f \in \mathcal{C}(X,Y)$. Si A est une partie connexe de X, alors f(A) est aussi une partie connexe de Y.

Preuve : Soit $g: f(A) \longrightarrow \{0,1\}$ une application continue. $g \circ f$ est une fonction continue de A dans $\{0,1\}$ car il s'agit de la composition de deux applications continues, elle est alors constante. On en déduit donc directement que $\exists c \in \{0,1\}, g \circ f(A) = \{c\}$, i.e. $g(f(A)) = \{c\}$. g est alors constante sur f(A) ce qui nous permet d'affirmer que f(A) est bien une partie connexe de Y.

II Parties connexes par arc

Dans cette partie, on considère (E, d) un espace métrique.

Proposition II.1.

[0,1] est une partie connexe.

Preuve : Soit $f \in \mathcal{C}([0,1],\{0,1\})$. Supposons sans perte de généralité que f(0)=0. On considère l'ensemble

$$A = \{x \in [0,1], \ \forall y \in [0,x], \ f(y) = 0\}$$

Posons $a = \sup A$. a est limite d'une suite à valeurs dans A, donc par continuité de f, on a f(a) = 0. Supposons que $a \neq 1$. On a pour tout $n \in \mathbb{N}$, $\exists x_n \in \left[a, a + \frac{1}{n}\right]$, $f(x_n) = 1$. La suite (x_n) converge vers a et donc

$$f(x_n) \xrightarrow[n \to +\infty]{} 1 \neq f(a)$$

ce qui est absurde car f est continue.

Définition II.2.

- 1. On appelle arc continu toute application continue d'un segment [a, b] de \mathbb{R} dans E.
- 2. Une partie A de E est dite connexe par arcs si tous éléments x et y de A peuvent être reliés par un arc continu sur A, i.e.

$$\forall (x,y) \in A^2, \ \exists \gamma \in \mathcal{C}([0,1],A), \ \gamma(0) = x \ \text{et} \ \gamma(1) = y$$

Remarque : Dans la définition de la connexité par arc, on aurait pu remplacer 0 par $a \in \mathbb{R}$ et 1 par $b \in \mathbb{R}$ tel que a < b quelconques.

(CC) BY-NC-SA

Définition II.3.

Soit $x,y,z\in E,\,\gamma$ un arc continu reliant x et y et δ un arc continue reliant y et z. L'arc $\gamma\bullet\delta$ est défini par

$$\gamma \bullet \delta : \begin{cases} [0,1] & \longrightarrow E \\ y & \longmapsto \begin{cases} \gamma(2t) & \text{si } t \in \left[0,\frac{1}{2}\right] \\ \delta(2t-1) & \text{si } t \in \left[\frac{1}{2},1\right] \end{cases}$$

Par construction $\gamma \bullet \delta$ est un arc continu reliant $x \grave{a} z$. On dit que $\gamma \bullet \delta$ est la reliure des deux arcs γ et δ . • n'étant pas associative, pour trois arcs $\gamma_1, \gamma_2, \gamma_3$, on définit $\gamma_1 \bullet \gamma_2 \bullet \gamma_3$ comme $\gamma_1 \bullet (\gamma_2 \bullet \gamma_3)$.

Définition II.4.

Supposons que pour tout $t \in [0,1], (1-t)a+tb \in E$. Pour tout $x,y \in E$, on définit l'arc $\theta(x,y)$ comme

$$\theta(x,y): \begin{cases} [0,1] & \longrightarrow E \\ t & \longmapsto (1-t)x+ty \end{cases}$$

Par construction, $\theta(x,y)$ est bien un arc continu reliant $x \ge y$.

Remarque: Attention, ces deux dernières notations sont propres à ce cours en particulier et ne sont pas communes en classes préparatoires. Si vous souhaitez les utiliser, il faut les définir avant.

Proposition II.5.

Soit F un espace métrique et f une fonction continue de E dans F. L'image d'une partie de E connexe par arcs par f est connexe par arcs.

Preuve: Soit A une partie connexe par arcs de E. Soit $a, b \in f(A)$, et $x, y \in A$ tels que a = f(x) et b = f(y). A est connexe par arcs, il existe donc un arc $\gamma \in \mathcal{C}([0,1],A)$ tel que $\gamma(0) = x$ et $\gamma(1) = y$. On a alors $f \circ \gamma$ est un arc continu reliant a = f(x) et b = f(y).

Proposition II.6.

Une partie A de E connexe par arcs est connexe.

Preuve : Soit $g:A\longrightarrow\{0,1\}$ une fonction continue. Soient x et y dans A. A est connexe par arcs, il existe donc un arc continu $\gamma\in\mathcal{C}([0,1],A)$ tel que $\gamma(0)=x$ et $\gamma(1)=y$.

L'application $g \circ \gamma : [0,1] \longrightarrow \{0,1\}$ est continue et [0,1] est connexe, donc elle est constante et alors g(x) = g(y). On en déduit donc que g est constante et que par conséquent A est connexe.

Exemple: Pour tout $n \in \mathbb{N}^*$, $GL_n(\mathbb{R})$ n'est pas connexe par arcs. En effet, l'application $f = \det$ est continue, donc si $GL_n(\mathbb{R})$ était connexe par arcs, $f(GL_n(\mathbb{R}))$ le serait aussi. Mais $f(GL_n(\mathbb{R})) = \mathbb{R}^*$ qui n'est pas connexe par arcs.

(CC) BY-NC-SA

Proposition II.7.

Soit A une partie de E.

1. La relation sur A^2 définie par

$$\forall x, y \in A, \ x \sim_A y \iff \exists \gamma \in \mathcal{C}([0, 1], A), \ \gamma(0) = x \text{ et } \gamma(1) = y$$

est une relation d'équivalence.

2. Les classes d'équivalence pour \sim_A sont connexes par arcs. On appelle ces classes composantes connexes par arcs.

Lorsqu'il n'y a pas d'ambiguïté sur l'ensemble A, on note \sim aulieu de \sim_A .

Preuve

1. → Réflexivité

Soit Soit $x, y \in A$. Si $x \sim y$, alors il existe un arc $\gamma \in \mathcal{C}([0, 1], A)$ reliant x et y. Il suffit alors de considérer $\tilde{\gamma} : a \longmapsto \gamma(1-a)$. L'arc $\tilde{\gamma}$ relie x et y et $\tilde{\gamma}(0) = y$ et $\tilde{\gamma}(1) = x$ et alors $y \sim x$.

- \rightarrow Symétrie Soit $x \in A$. L'arc $\gamma: t \longmapsto x$ constant sur [0,1] relie x à x, donc $x \sim x$.
- \rightarrow Transitivité

Soit $x, y, z \in A$ tels que $x \sim y$ et $y \sim z$. Soit $\gamma, \delta \in \mathcal{C}([0, 1], A)$ deux arcs reliant respectivement x à y et y à z. On considère l'arc suivant

$$\beta = \gamma \bullet \delta : \begin{cases} [0,1] & \longrightarrow A \\ x & \longmapsto \begin{cases} \gamma(2t) & \text{si } x \in \left[0,\frac{1}{2}\right] \\ \delta(2t-1) & \text{si } x \in \left[\frac{1}{2},1\right] \end{cases}$$

 β est continu et $\beta(0) = x$ et $\beta(1) = z$, donc $x \sim z$.

Proposition II.8.

- 1. Une réunion de parties de E connexes par arcs ayant un point en commun est connexe par arcs.
- 2. Soit $n \in \mathbb{N}^*$ et E_1, \ldots, E_n des espaces métriques. Si pour tout $k \in [1; n]$, A_k est une partie connexe par arcs de E_k , alors $A_1 \times \cdots \times A_n$ est une partie connexe par arcs de l'espace métrique produit $E_1 \times \cdots \times E_n$.

Preuve

- 1. Soit $n \in \mathbb{N}^*$ et $(A_n)_{n \in \mathbb{N}}$ une famille de parties connexes par arcs tels que pour tout $k \in [1; n]$, $a \in A_k$. Posons $A = \bigcup_{n \in \mathbb{N}} A_n$. soit x et y deux points de A. Soit $k, l \in \mathbb{N}$ tels que $x \in A_k$ et $y \in A_l$. On a a et x sont deux éléments de l'ensemble connexe par arcs A_k , donc $x \sim_{A_k} a$ donc $x \sim_A a$ et a et y sont deux éléments de l'ensemble connexe par arcs A_l , donc $a \sim_{A_l} y$ donc $a \sim_A y$. On en déduit donc par transitivité que $x \sim y$ et que finalement A est connexe par arcs.
- 2. Soit $a = (a_1, \ldots, a_n)$ et $b = (b_1, \ldots, b_n)$ deux éléments de $E_1 \times \cdots \times E_n$. Pour tout $k \in [1; k]$, il existe un arc γ_k reliant a_k et b_k . Considérons l'arc sur $E_1 \times \cdots \times E_n$, $\gamma : t \longmapsto (\gamma_1(t), \ldots, \gamma_n(t))$. L'arc γ est continu et relie a et b, donc $A_1 \times \cdots \times A_n$ est bien connexe par arcs.

Exercice II.9.

Soit Ω une union d'ouverts disjoints de \mathbb{R} . On écrit

$$\Omega = \bigcup_{n \in \mathbb{N}}]a_n, b_n[$$

avec pour tout $n \in \mathbb{N}$, $a_n < b_n$. Montrer que Ω n'est pas connexe par arcs.

Exercice II.10.

Soit $p \in \mathbb{N}^*$ et $z_1, \ldots, z_p \in \mathbb{C}$. Montrer que $\mathbb{C} \setminus \{z_1, \ldots, z_p\}$ est connexe par arcs.

Exercice II.11.

Soit $n \in \mathbb{N}^*$ et H un hyperplan de \mathbb{C}^n . Montrer que $\mathbb{C}^n \setminus H$ est connexe par arcs.

Exercice II.12.

Soit $n \in \mathbb{N}^*$ et H un hyperplan de \mathbb{R}^n . Montrer que $\mathbb{R}^n \setminus H$ n'est pas connexe par arcs.

Exercice II.13.

Soit Ω un ouvert connexe de \mathbb{R}^n . Montrer que Ω est connexe par arcs polygonaux, i.e. pour tous points x, y de E, x et y peuvent être reliés par un arc affine par morceaux.

III Application aux fonctions à variables réelles

Proposition III.1.

Soit A une partie de \mathbb{R} . Les propositions suivantes sont équivalentes.

- 1. A est connexe par arcs.
- 2. A est un intervalle.

Preuve

- \rightarrow (2) \Rightarrow (1) Pour tout $a, b \in A$ tel que a < b, si on considère l'application continue $f_{a,b} : x \mapsto (b-a)x + a$, alors $f_{a,b}$ est un arc continu liant $a \ a \ b$ donc $a \sim b$. A est donc connexe par arcs.
- \to (1) \Rightarrow (2) soit $x, y \in A$ et $z \in]x, y[$. Soit γ un arc continu reliant x et y. Posons

$$S_z = \{t \in [0,1], \ \gamma(t) \le z\} = \gamma^{-1}([x,z])$$

 S_z est fermé car il s'agit de l'image réciproque d'un fermé par la fonction continue γ et de plus, S_z est non vide car $1 \in S_z$, donc $c = \sup S_z \in S_z$, i.e. $\gamma(c) \leq z$ et c < 1 car $1 \notin S_z$. On a aussi pour tout $t \in]0, 1-c]$, $\gamma(c+t) > z$. En faisant tendre t vers 0, on obtient par continuité de γ que $\gamma(c) \geq z$, et alors $\gamma(c) = z$. On en déduit donc que $z \in A$, donc $[x, y] \subset A$ et finalement que A est un intervalle.

Conséquence : Si I est un intervalle et f une fonction continue de I dans \mathbb{R} , alors I est continu par arcs donc f(I) aussi, i.e. f(I) est un intervalle.

Proposition III.2.

Soit I un intervalle de \mathbb{R} et $f \in \mathcal{C}(I,\mathbb{R})$. Les propositions suivantes sont équivalentes.

- 1. f est injective.
- 2. f est strictement monotone.

Preuve

- \rightarrow (2) \Rightarrow (1) Supposons que f soit injective et donc dans perte de généralité strictement croissante. Pour tout $x, y \in I$, si $x \neq y$, on suppose sans perte de généralité que x > y. Par stricte monotonie de f, on a que f(x) > f(y) et alors $f(x) \neq f(y)$. f est donc bien injective,.
- \rightarrow (1) \Rightarrow (2) Posons $\Delta = \{(x,y) \in I^2, x < y\}$ et considérons l'application

$$\varphi: \begin{cases} \Delta & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto f(y) - f(x) \end{cases}$$

Le fait que f soit injective est équivalent au fait que φ ne s'annule pas sur Δ , donc φ est à valeurs dans \mathbb{R}^* . Δ est convexe donc connexe par arcs. En effet, si a et b sont deux points de Δ , l'arc continu

$$\gamma: \begin{cases} [0,1] & \longrightarrow \Delta \\ t & \longmapsto ta + (1-t)b \end{cases}$$

lie a et b dans Δ . Or φ est continue, $\varphi(\Delta)$ est alors une partie connexe par arcs de \mathbb{R}^* et donc un intervalle. Deux cas de présentent alors

- $\varphi(\Delta) \subset]0, +\infty[$ donc f est strictement croissante.
- $\varphi(\Delta) \subset]-\infty,0[$ donc f est strictement décroissante.

On a donc bien le résultat voulu.

Proposition III.3.

Soit I un intervalle de \mathbb{R} et f une application de I dans \mathbb{R} .

- 1. Si f est monotone, alors les propositions suivantes sont équivalentes.
 - (a) f est continue.
 - (b) f(I) est un intervalle.
- 2. Si f est continue et injective, alors $f^{-1}: f(I) \longrightarrow I$ est continue.

Preuve

- 1. Supposons que f est monotone.
 - \rightarrow (a) \Rightarrow (b) I est connexe par arcs et f est continue, donc f(I) est aussi connexe par arcs i.e. c'est un intervalle.
 - \rightarrow $(b) \Rightarrow (a)$ Supposons sans perte de généralité que f soit croissante. Nous allons traiter uniquement le cas où f admet un point de discontinuité sur l'intérieur de I. Le lecteur pourra essayer de faire le cas d'une discontinuité aux bords de l'intervalle. Supposons que f admettes un point de discontinuité x_0 sur l'intérieur de I. On note respectivement $f(x_0^+)$ et $f(x_0^-)$ les limites à droite et à gauche de x_0 des f. On a alors $f(x_0^-) \leq f(x_0) \leq f(x_0^+)$ et $f(x_0^-) < f(x_0^+)$. Soit $y_0 \in]f(x_0^-), f(x_0^+)[\setminus \{f(x_0)\} := A_0$. On a pour tout $t \in I$,
 - Si $t < x_0$, alors $f(t) \le f(x_0^-)$ et donc $f(t) \ne y_0$
 - Si $t = x_0$, alors $f(t) = f(x_0) \neq y_0$

• Si $t > x_0$, alors $f(t) \ge f(x_0^+)$, donc $f(t) \ne y_0$.

On en déduit que $y_0 \notin f(I)$ et y_0 est compris entre deux éléments de f(I). f(I) n'est donc pas un intervalle.

2. Il suffit d'appliquer la question précédente et la proposition III.2. f est une fonction continue sur l'intervalle I et injective, elle est donc strictement monotone d'après la proposition III.2. f^{-1} est alors aussi strictement monotone. De plus, on a $f^{-1}(f(I)) = I$ et I et f(I) sont des intervalles, donc d'après (1), f^{-1} est continue.

Exercice III.4.

Soit f une fonction de [0,1] dans [0,1] telle qu'il existe $p \in \mathbb{N}^*$, $\underbrace{f \circ \cdots \circ f}_{p \text{ fois}} = Id$. Supponsons que f(0) = 0 Montrer que f = Id.

Exercice III.5.

Soit $f \in \mathcal{C}^1([0,1],\mathbb{R})$ telle que $f \times (1-f') = 0$. Déterminer f.

Exercice III.6.

Montrer que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.

Exercice III.7.

Posons $S(0,1)=\{z\in\mathbb{C},\;|z|=1\}.$ Montrer que S(0,1) n'est homéomorphe à aucune partie $\mathbb{R}.$

Exercice III.8.

Soit $f:S(0,1)\longrightarrow S(0,1)$ une fonction injective et continue. Montrer que f est un homéomorphisme.

Correction de l'exercice II.9. :

Méthode 1 : Soit $n, m \in \mathbb{N}$ deux entiers naturels différents, $x \in]a_n, b_n[$ et $y \in]a_m, b_m[$. Supposons par l'absurde que Ω soit connexe par arcs. Il existe un arc γ liant xet y. On suppose sans perte de généralité que $b_n \le a_m$. On a $\gamma(0) = x < b_n < y = \gamma(1)$ et γ est continue. Par le théorème des valeurs intermédiaires, il existe $c \in]0,1[, \gamma(c) = b_n$, mais $b_n \notin \Omega$ ce qui absurde car γ est à valeurs dans Ω par hypothèse.

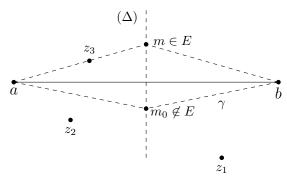
Méthode 2 (plus simple): En posant pour tout $k \in \mathbb{N}$, $A_k =]a_k, b_k[$, on peut partionner Ω en deux ouverts, par exemple $O_1 = A_0$ et $O_2 = \bigcup A_k$. On a $O_1 \cup O_2 = \Omega$, $O_1 \cap O_2 = \emptyset$, $O_1 \neq \emptyset$ et $O_2 \neq \emptyset$. Ω

n'est donc pas connexe et alors pas connexe par arcs.

Correction de l'exercice II.10. :

Soit $a, b \in S = \mathbb{C} \setminus \{z_1, \dots, z_p\}$. Considérons les deux ensembles suivants :

- $\rightarrow \ \Delta = \{x \in \mathbb{C}, \ |x-a| = |x-b|\} \ \text{la médiatrice du segment} \ [a,b].$
- $\to E = \{ m \in \Delta, \exists k \in [1; p], z_k \in [a, m] \cup [b, m] \}.$



 $|E| \leq p$, donc E est fini. On peut donc considérer $m_0 \in \Delta \setminus E$ car cet ensemble est non vide. Il suffit alors de considérer l'arc

$$\gamma = \theta(a, m_0) \bullet \theta(m_0, b) : \begin{cases} [0, 1] & \longrightarrow S \\ t & \longmapsto \begin{cases} 2tm_0 + (1 - 2t)a & \text{si } t \in \left[0, \frac{1}{2}\right] \\ (2t - 1)b + 2(1 - t)m_0 & \text{si } t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

 γ est un arc continu à valeurs dans S qui lie a à b en passant par m_0 , donc S est bien connexe par arcs.

Correction de l'exercice II.11. :

Soit H un hyperplan de \mathbb{C}^n et φ une forme linéaire non nulle telle que $\operatorname{Ker} \varphi = H$. Posons $S = \mathbb{C}^n \setminus H$ et montrons que S est connexe par arcs. Soit $a, b \in S$

- \rightarrow Si $\varphi(a) = \varphi(b)$, alors pour tout $\lambda \in [0,1]$, $\varphi((1-\lambda)a + \lambda b) = \varphi(a) \neq 0$. Il suffit alors de considérer l'arc $\gamma = \theta(a,b): t \longmapsto (1-t)a + tb$. Cet arc est bien à valeurs dans S et lie a et b.
- \rightarrow Si $\varphi(a) \neq \varphi(b)$, alors on considère $K_{a,b} = \{\lambda \in \mathbb{C}, \ \varphi((1-\lambda)a + \lambda b) = 0\}$. $\varphi((1-\lambda)a + \lambda b) = 0 \iff \lambda = \frac{\varphi(a)}{\varphi(b) \varphi(a)} := \lambda_{a,b}$, donc on a $K_{a,b} = \{\lambda_{a,b}\}$. D'après l'exercice précédent, on dispose d'un arc γ liant a et b dans $\mathbb{C} \setminus \{\lambda_{a,b}\}$. Considérons Γ l'arc

défini par

$$\Gamma: \begin{cases} [0,1] & \longrightarrow S \\ t & \longmapsto (1-\gamma(t))a + \gamma(t)b \end{cases}$$

 Γ est bien à valeurs dans S car pour tout $t, \Gamma(t) \in H$ impliquerait que $\gamma(t) = \lambda_{a,b}$ ce qui est impossible. Γ lie a à b dans S, S est donc bien connexe par arcs.

Correction de l'exercice II.12. :

Soit H un hyperplan de \mathbb{R}^n et φ une forme linéaire non nulle telle que $\operatorname{Ker} \varphi = H$. Considérons les deux ensembles $A_+ = \{x \in \mathbb{R}^n, \ \varphi(x) > 0\}$ et $A_- = \{x \in \mathbb{R}^n, \ \varphi(x) < 0\}$. On a $\mathbb{R}^n \setminus H = A_+ \cup A_-$. Soit $x \in A_+$ et $y \in A_-$. Supposons par l'absurde qu'il existe un arc γ liant x et y. L'application $\varphi \circ \gamma$ est continue et $\varphi \circ \gamma(0) = \varphi(x) > 0 > \varphi(y) = \varphi \circ \gamma(1)$, donc d'après le théorème des valeurs intermédiaires, il existe $c \in]0,1[,\ \varphi \circ \gamma(c) = 0$, i.e. $\gamma(c) \in H$ ce qui est absurde. On en déduit donc que $\mathbb{R}^n \setminus H$ n'est pas connexe par arcs.

Méthode 2 (plus simple) : A_+ et A_- sont deux ouverts disjoints non vides dont l'union fait $\mathbb{R}^n \setminus H$, $\mathbb{R}^n \setminus H$ n'est alors pas connexe donc pas connexe par arcs.

Correction de l'exercice II.13. :

Soit $a \in \Omega$. Considérons A la composante connexe par arcs polygonaux de a dans Ω . Montrer que Ω est connexe par arcs polygonaux revient à montrer que $A = \Omega$. Ω étant connexe par arcs donc connexe, une idée serait de montrer que A est ouvert et fermé dans Ω .

- \rightarrow Montrons que A est ouvert. Soit $x \in A$. Il existe un arc polygonal γ reliant a et x. Ω étant ouvert, il existe $\varepsilon > 0$ tel que $B(x,\varepsilon) \subset \Omega$. soit $y \in B(x,\varepsilon)$. $B(x,\varepsilon)$ est convexe, $\theta(x,y)$ est donc un arc continu polygonal (c'est un segment) reliant x à y dans $B(x,\varepsilon)$ donc dans Ω . On en déduit donc que $\gamma \bullet \theta(x,y)$ est un arc polygonal qui relie a à y dans Ω , donc $y \in A$ et alors $B(x,\varepsilon) \subset A$. A est donc ouvert.
- \to Montrons que $\Omega \setminus A$ est aussi ouvert. Soit $b \in \Omega \setminus A$ et B la composante connexe par arcs de b. Par le raisonnement précédent, B est ouvert et contient b, c'est donc un voisinage de b inclus dans $\Omega \setminus A$. $\Omega \setminus A$ est donc ouvert. Ω est connexe et A est ouvert et fermé dans Ω , ce qui nous permet d'affirmer finalement que $A = \Omega$.

Correction de l'exercice III.4. :

Soit $p \in \mathbb{N}^*$ tel que $\underbrace{f \circ \cdots \circ f}_{p \text{ fois}} = Id$. Cette inégalité nous permet de dire que f est bijective sur un

intervalle et alors par la proposition III.2., f est strictement monotone. f(0) = 0, donc f est strictement croissante. Supposons par l'absurde qu'il existe $x \in [0, 1]$ tel que f(x) < x, on a alors

$$x > f(x) > f \circ f(x) > \dots > \underbrace{f \circ \dots \circ f}_{p \text{ fois}}(x) = x$$

ce qui est absurde. De même, on obtient la même contradiction lorsqu'on suppose que f(x) < x. Donc a bien que f = Id.

Correction de l'exercice III.5. :

Supposons que $f \neq 0$ et posons $A = \{x \in [0,1], f'(x) = 1\}$. Montrons que A est fermé et ouvert dans [0,1] et est donc égal à [0,1] par connexité de [0,1].

- \rightarrow A est fermé car c'est l'image réciproque du fermé {1} par l'application continue f'.
- \rightarrow Montrons que A est ouvert. Soit $a \in A$.
 - Si $f(a) \neq 0$, alors par continuité de f, il existe un voisinage U de a où f est non nulle, et alors l'égalité $f \times (f'-1) = 0$ entraı̂ne que f' = 1 sur U, i.e. $U \subset A$.
 - Si f(a) = 0, alors on a

$$f(a+h) = f'(a)h + o(h) = h\underbrace{(1+o(1))}_{\varepsilon(h)}$$

 $\varepsilon(h) \xrightarrow[h \to 0]{} 1$, donc il existe $\eta > 0$ tel que pour tout $h \in B_f(0,\eta) \setminus \{0\}$, $|\varepsilon(h)| > \frac{1}{2}$ et alors pour tout $h \in B_f(0,\eta) \setminus \{0\}$, $f(a+h) > \frac{h}{2} > 0$ et alors l'égalité $f \times (f'-1) = 0$ entraı̂ne

f'(a+h)=1. On en déduit donc que $[a-h,a+h]\subset A$, donc A est bien ouvert et finalement A=[0,1].

Finalement on déduit de ce qui précède que les fonctions $f \in \mathcal{C}^1([0,1],\mathbb{R})$ vérifiant $f \times (f'-1) = 0$ sont la fonction nulle et les fonctions de la forme $f : x \longmapsto x + C$ avec $C \in \mathbb{R}$.

Correction de l'exercice III.6. :

Supposons par l'absurde que \mathbb{R} et \mathbb{R}^2 sont homéomorphes. Il existe alors une fonction f bijective continue de \mathbb{R} dans \mathbb{R}^2 d'inverse continu. $\mathbb{R}^2 \setminus \{f(0)\}$ est connexe par arcs, f^{-1} est continue donc $f^{-1}(\mathbb{R}^2 \setminus \{f(0)\})$ est connexe par arcs d'après la proposition II.5 mais $f^{-1}(\mathbb{R}^2 \setminus \{f(0)\}) = \mathbb{R}^*$ et \mathbb{R}^* n'est pas connexe par arcs, ce qui est absurde.

Correction de l'exercice III.7. :

Soit A une partie de \mathbb{R} . Supposons que A est homéomorphe à S(0,1), i.e. il existe un homéomorphisme $f:S(0,1)\longrightarrow A$. S(0,1) est connexe par arcs, donc A=f(S(0,1)) est compact (c'est l'image d'un compact par une application continue) connexe par arcs, i.e. c'est un intervalle fermé, on pose alors A=[a,b] avec a< b. Soit $c=\frac{a+b}{2}$ et $B=S(0,1)\setminus\{f^{-1}(c)\}$. B est connexe par arcs et f est continue, donc f(B) est connexe par arcs. Mais $f(B)=A\setminus\{c\}$ et $A\setminus\{c\}$ n'est pas connexe par arcs ce qui est absurde.

Correction de l'exercice III.8. :

- \rightarrow Si f est surjective, alors elle est bijective. Montrons que c'est bien un homéomorphisme. Pour tout fermé F de S(0,1), $(f^{-1})^{-1}(F)=f(F)$ qui est fermé d'après le corollaire VI.2 du chapitre 11.5. On a montré que l'image réciproque de tout fermé de S(0,1) par f^{-1} est fermé, donc f^{-1} est continue et finalement f est une homéomorphisme.
- \rightarrow Si f n'est pas surjective, alors posons $f(S(0,1)) = S' \subset S(0,1)$. Quitte à composer par une rotation, on suppose que $-1 \notin f(S(0,1))$. Considérons l'application

$$Arg: \begin{cases} S' & \longrightarrow]-\pi, \pi[\\ x+iy & \longmapsto 2\arctan\left(\frac{y}{x+1}\right) \end{cases}$$

Soit $x + iy \in S'$. Posons $\theta = Arg(x + iy)$. On a

$$\cos(\theta) = \frac{1 - \tan\left(\frac{\theta}{2}\right)^2}{1 + \tan\left(\frac{\theta}{2}\right)^2} = \frac{1 - \left(\frac{y}{x+1}\right)^2}{1 + \left(\frac{y}{x+1}\right)^2}$$
$$= \frac{x^2 + 2x + 1 - y^2}{x^2 + 2x + 1 + y^2} = \frac{2x^2 + 2x}{2x + 2}$$
$$= \frac{2x(x+1)}{2(x+1)} = x$$

On peut montrer de la même manière que $\sin(\theta) = y$, donc pour tout z = x + iy et z' = x' + iy' dans S(0,1), Arg(z) = Arg(z') donne en composant par cos et sin que x = x' et y = y', i.e. z = z'. Donc Arg est bien injective.

Soit $g = Arg \circ f$. g est une injection continue de S(0,1) dans \mathbb{R} et S(0,1) est connexe par arcs, donc il existe $a,b \in \mathbb{R}$ tels que a < b et g(S(0,1)) = [a,b] (c'est un intervalle fermé car il s'agit de l'image d'un compact par une application continue, i.e. un compact). g est donc une bijection continue de S(0,1) dans [a,b] qui sont deux compacts, donc par un raisonnement similaire au début de l'exercice, g est un homéomorphisme. On a montré que S(0,1) est homéomorphe à un segment de \mathbb{R} ce qui est impossible d'après l'exercice précédent. On en déduit donc que f est bijective et que finalement que f est un homéomorphisme en se ramenant au premier cas.

* *

Document compilé par Omar Bennouna et révisé par Issam Tauil le 07/04/2022 pour cpge-paradise.com.

Si vous repérez une erreur, ou avez des remarques, prière de me contacter via l'adresse contact@cpge-paradise.com.

