Devoir en temps libre °3 : Optique

Exercice 1 : Hyperboles de conjugaison

On considère une lentille mince convergente, notée \mathcal{L}_c de centre optique O et de distance focale image notée f'_c . La figure 1 (à rendre avec la copie) représente la position $\overline{OA'}$ de l'image que la lentille \mathcal{L}_c donne d'un objet de position \overline{OA} situé sur l'axe optique.

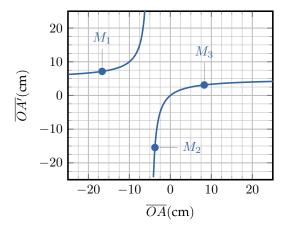


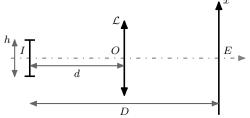
Fig. 1 : Position de l'image en fonction de celle de l'objet pour une lentille convergente.

- 1. (a) Déterminer à l'aide de la figure 1 la valeur de la distance focale f'_c .
 - (b) Pour chacun des points M_1 , M_2 et M_3 , déterminer la nature réelle ou virtuelle de l'objet et de l'image correspondant.
- 2. (a) Proposer une détermination du grandissement transversal utilisant la figure 1.
 - (**b**) En déduire le grandissement correspondant aux points M_1 et M_2 .
- 3. On cherche avec cette lentille à former une image réelle deux fois plus grande d'un objet réel.
 - (a) Quel sera le signe du grandissement?
 - (b) Déterminer à l'aide de la figure 1 la distance entre la lentille et l'objet ainsi que la distance entre l'objet et son image.
- **4**. On considère une lentille mince divergente, de vergence $V=-10\,\delta$.
 - (a) Tracer l'allure de la courbe $\overline{OA'}$ en fonction de \overline{OA} en précisant soigneusement les points remarquables. On pourra se contenter de modifier quelques paramètres de la figure 1 et l'utiliser pour les questions suivantes.
 - (b) Cette lentille modélise le verre correcteur d'un œil myope. Où se forme l'image formée par ce verre d'un objet réel placé à 20 cm?

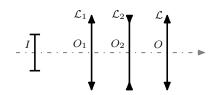
- (c) Avec ce verre, l'œil corrigé voit net sans accommoder un objet à l'infini. En déduire le « punctum remotum » de l'œil non corrigé.
- (d) Le « punctum proximum » de l'œil non corrigé est 5 cm, quel est le « punctum proximum » de l'œil corrigé ?

Exercice 2 : Rétroprojecteur

On souhaite former, sur un écran mural noté E, l'image agrandie d'un transparent à l'aide d'une lentille mince convergente \mathcal{L} . On désigne par I l'intersection du transparent avec l'axe optique, par O et f' le centre optique et la distance focale image de la lentille. On désigne par d la distance IO.

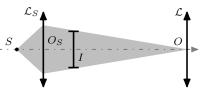


- **1**. (a) Déterminer le signe de γ .
 - (b) On souhaite que la taille de l'image sur l'écran soit $|\gamma|h$, avec $|\gamma|>1$. Déterminer l'expression de la distance d puis de la distance focale f' en fonction de D et γ . Calculer d, et f' pour $h=24\,\mathrm{mm}$, $H=|\gamma|h=1,2\,\mathrm{m}$ et $D=D_0=3,0\,\mathrm{m}$. On note d_0 la valeur de d et et O_0 la position correspondante.
 - (c) On peut régler l'objectif en translatant O par rapport à I. Déterminer les distances D_{\min} et D_{\max} quand on déplace O de 1 mm de part et d'autre de la position O_0 et commenter.
- 2. Pour cette question, D est de nouveau fixé à $D = D_0$ et la lentille en O_0 . On souhaite multiplier la taille de l'image sur l'écran par 2 sans déplacer ni celui-ci ni le transparent, ni la lentille. On envisage d'intercaler, entre le transparent et la lentille \mathcal{L} , une lentille mince convergente \mathcal{L}_1 de distance focale image f_1' et une lentille mince divergente \mathcal{L}_2 de distance focale image f_2' , avec $|f_2'| = 2f_1'$.



- (a) Justifier qu'on n'aurait pas pu réaliser cette dilatation par 2 en n'ajoutant qu'une seule lentille.
- (b) On place la lentille \mathcal{L}_1 de telle sorte que son foyer objet coïncide avec I. Où doit-on placer \mathcal{L}_2 ? On justifiera le fonctionnement de ce dispositif en s'aidant d'une construction.
- 3. On supprime dans cette partie les lentilles \mathcal{L}_1 et \mathcal{L}_2 pour étudier maintenant la source lumineuse éclairant le transparent. On la considère ponctuelle, située en S à une distance d_S en amont de le transparent. La distance D est à nouveau fixée à D_0 .

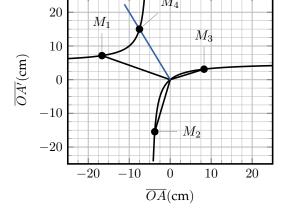
On intercale, en O_S une lentille mince convergente \mathcal{L}_S (de distance focale f_S') entre S et le transparent de telle sorte que le faisceau lumineux issu de S englobe tout le transparent et se focalise en O_0 , centre optique de la lentille \mathcal{L} .



- (a) Le schéma ci-dessus représente l'enveloppe « utile » du faisceau lumineux issu de S atteignant la lentille \mathcal{L} . Compléter ce schéma pour représenter cette enveloppe entre la lentille \mathcal{L} et l'écran E.
- (b) Déterminer l'expression de la distance SO_S en fonction de f_S' , d_S et d_0 . Calculer SO_S pour $f_S'=1.8$ cm et $d_S=5$ cm.
- (c) Quelle est l'utilité de la lentille \mathcal{L}_S ?

Correction de l'exercice 1

- 1. (a) On observe que la distance $\overline{OA'}$ diverge pour $\overline{OA_0} = -5.0$ cm. Le point A_0 est donc conjugué de l'infini, c'est donc par définition le foyer objet. On en déduit que f' = 5.0 cm. On vérifie d'ailleurs que pour $OA = \infty$, $\overline{OA'} = 5.0$ cm : le foyer image est bien symétrique du foyer objet.
 - (b) L'objet est réel (resp. virtuel) pour $\overline{OA}<0$ (resp. pour $\overline{OA}>0$). C'est l'inverse pour l'image. On en déduit que :
 - \bullet en M_1 l'objet et l'image sont tous deux réels ; on est en zone de projection
 - $\bullet\,$ en M_2 l'objet est réel et l'image est virtuelle ; on est en zone de loupe
 - \bullet en M_3 l'objet est virtuel et l'image est réelle.
- 2. (a) En notant $y = \overline{OA'}$ et $x = \overline{OA}$, le grandissement transversal a pour expression $\gamma = y/x$, c'est donc la pente de la droite joignant l'origine x = 0, y = 0 au point M, représentée sur la figure 2.

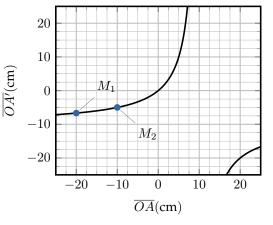


- **(b)** On lit:
 - en $M_1: \gamma = -0.4$,
 - en $M_2 : \gamma = 4,0$.

- Fig. 2
- **3**. (a) On doit être en zone de projection, où $\gamma < 0$ puisque $\overline{OA} < 0$ et $\overline{OA} > 0$.
 - (b) On trace la droite de pente $\gamma=-2$ issue de l'origine. Les coordonnées de son intersection avec la courbe de la figure 2 (point M_4) donnent :
 - $\overline{OA} = -7.5 \,\mathrm{cm}$,
 - $\overline{OA'} = 15 \,\mathrm{cm}$.

La distance entre la lentille et l'objet est donc $|\overline{OA}|=7.5\,\mathrm{cm}$ et celle entre l'objet et l'image est $AA'=\overline{OA'}-\overline{OA}=22.5\,\mathrm{cm}$. Remarquons que D=AA' peut également s'interpréter graphiquement comme la distance, pour $x=-7.5\,\mathrm{cm}$, entre la courbe de la figure 2 et la courbe d'équation y=x.

(a) La distance focale de la lentille est f' = 1/V = -10 cm. Il suffit donc de décaler la courbe 1 pour que OA' diverge en OA = -f' et que ses asymptotes pour OA → ±∞ soient OA' = f'. On obtient la courbe de la figure 3.



(b) Le point M_1 sur la courbe, a pour abscisse $\overline{OA} = -20$ cm. On lit son ordonnée $\overline{OA'} = -6.7$ cm.

- Fig. 3
- (c) L'image d'un point à l'infini par cette lentille est son foyer image situé à l'asymptote $\overline{OA'} = f' = -10$ cm. Comme l'œil voit cet objet sans accommoder, cette distance est son « punctum remotum » de l'œil non corrigé. On a ici négligé la distance entre l'œil et le verre.
- (d) Quand il accommode au maximum, l'œil voit net un objet placé à son « punctum proximum » non corrigé, soit en $\overline{OA^{prime}} = -5$ cm (point M_2 sur la figure 3). Avec le verre, ce point est l'image du point $\overline{OA} = -10$ cm; c'est donc le nouveau « punctum proximum » pour l'œil corrigé.

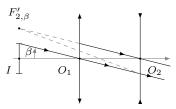
Correction de l'exercice 2

- 1. (a) Utilisons $\alpha = H/h$ et travaillons avec les distances (positives) OE et OI = d. La formule du grandissement de Descartes assure que $\alpha = OE/OI = OE/d$. Comme par ailleurs D = OE + d, on peut écrire $\alpha = \frac{D-d}{d}$, soit $d = \frac{D}{\alpha+1}$. La relation de conjugaison de Descartes donne $\frac{1}{OE} + \frac{1}{d} = \frac{1}{f'}$, soit $\frac{d}{D-d} + 1 = \frac{d}{f'}$ soit, après substitution de l'expression de d obtenue et manipulations $f' = \frac{D\alpha}{(\alpha+1)^2}$. On calcule $d_0 = 5,88\,\mathrm{cm}$ et $f' = 5,77\,\mathrm{cm}$: le transparent n'est qu'à 1 mm du foyer objet de la lentille, ce qui n'est pas surprenant puisqu'on veut un grandissement de $\alpha = 50$.
 - (b) On exprime cette fois-ci la distance D en fonction de d et f'. La relation de conjugaison $\frac{1}{D-d}+\frac{1}{d}=\frac{1}{f'}$ donne $D=\frac{d^2}{d-f'}$. On calcule $D=1,3\,\mathrm{m}$ pour $d=d_{\min}=5,98\,\mathrm{cm}$ et $D=33,4\,\mathrm{m}$ pour $d=d_{\min}=5,78\,\mathrm{cm}$. On constate qu'on pourra réaliser la mise au point sur des distances D très différentes en modifiant très légèrement la configuration.
- 2. (a) Le plan de l'écran est conjugué par $\mathcal L$ de celui du transparent. Si on forme une image du transparent par une autre lentille, celle-ci ne sera plus en I et la lentille $\mathcal L$ ne pourra pas en former une image sur l'écran.
 - (b) La lentille \mathcal{L}_1 envoie à l'infini l'image de I dont l'image par \mathcal{L}_2 sera au foyer image de cette dernière, qui doit donc coïncider avec I pour que son image par \mathcal{L} soit sur l'écran. On doit donc avoir

Devoir en temps libre °3 : Optique

 $I=F_1=F'2$. Comme $\left|f_2'\right|=2f_1'$, la lentille \mathcal{L}_2 doit être placée à $\left|f_2'\right|=2f_1'$ en aval de I. Notons que cette distance doit être inférieure à d pour qu'on puisse insérer les deux lentilles \mathcal{L}_1 et \mathcal{L}_2 en amont de la lentille de projection.

Il faut également vérifier que cette configuration réalise bien le grandissement attendu. L'image à l'infini formée par \mathcal{L}_1 est vue sous l'angle $\beta \simeq \tan \beta = h/f_1'$, son image par \mathcal{L}_2 sera le foyer image secondaire associé à cette incidence, sa taille sera donc $\tan \beta \times |f_2'| = h \frac{|f_2'|}{f_2'} = 2h$.



3. (a) et b. L'enveloppe est représentée ci-contre. La source O et le centre O de la lentille de projection doivent être conjugués par la lentille \mathcal{L}_S . On a donc, en notant x la distance SO_0 :

$$\frac{1}{x} + \frac{1}{d_0 + d_S - x} = \frac{1}{f'_S}$$
$$f'_S(d_0 + d_S) = x(d_0 + d_S - x)$$

$$=\frac{1}{f_S'}$$

$$=x(d_0+d_S-x)$$

$$x^{2} - (d_{0} + d_{S}) x + (d_{0} + d_{S}) f'_{S} = 0.$$

On en déduit

$$x = \frac{d_0 + d_S - \sqrt{(d_0 + d_S)(d_0 + d_S - 4f_S')}}{2} = 2,28 \,\mathrm{cm},$$

puisque l'autre solution correspondrait à mettre \mathcal{L}_S en aval de I.

(c) Cette lentille permet de récupérer une grande partie de la lumière de S en lui permettant de passer le diaphgrame que constitue la lentille $\mathcal L$ pour l'envoyer sur E.