Exercices d'application : décomposition, dismutation, substitution.

Culture en sciences physiques :

Corrigés en TD: Décomposition, hydrolyse, dimérisation.

Exercice 1 : Décomposition de l'anion peroxodisulfate: cinétique d'ordre 1

On s'intéresse à la réduction des anions peroxodisulfates $S_2O_8^{2^-}$ dans l'eau selon : $S_2O_8^{2^-} + 3 H_2O \longrightarrow 2 SO_4^{2^-} + 2 H_3O^+ + \frac{1}{2} O_2$ (aq)

1. On en étudie la cinétique en suivant l'évolution de $[S_2O_8^{2-}]$ dans une solution de peroxodisulfate de sodium $Na_2S_2O_8$ de concentration initiale $c_0=10,0\,\mathrm{mmol}\cdot\mathrm{L}^{-1}$. Les résultats expérimentaux à $\theta=80\,^\circ\mathrm{C}$ sont donnés dans le tableau ci-dessous :

t(min)	0	50	100	150	200	250
$t(\min)$ $c(t)(\operatorname{mmol} \cdot \mathbf{L}^{-1})$	10,0	7,80	6,05	4,72	3,68	2,86

- (a) Quelle devrait être la loi d'évolution de $[S_2O_8^{2-}]$ pour une cinétique d'ordre 1.
- (b) En déduire que le quotient $c(t + \Delta t)/c(t)$ devrait être constant pour tout t pour un intervalle de temps Δt donné. Montrer que les données expérimentales sont compatibles avec une cinétique d'ordre 1. On admet pour la suite que la cinétique est bien d'ordre 1.
- (c) Déterminer la constante de vitesse à cette température au moyen d'une régression linéaire.
- 2. L'énergie d'activation de cette réaction est $E_a=140\,{\rm kJ.mol^{-1}}$. Pendant quelle durée peut-on conserver, à $25\,^{\circ}{\rm C}$, la solution titrée de concentration c_0 dont la concentration doit être connue à 1% près. On utilisera la loi d'Arrhenius.
- 3. Quelle serait cette durée pour une solution 10 fois moins concentrée?

Exercice 2 : Dismutation des ions hypochlorite: cinétique d'ordre 2

À température suffisamment élevée, les ions hypochlorites ClO⁻ peuvent se dismuter selon une réaction totale, d'équation : ClO⁻ $\longrightarrow \frac{1}{3}$ ClO₃ + $\frac{2}{3}$ Cl⁻. La vitesse de disparition des ions ClO⁻ suit une loi cinétique du second ordre.

- Écrire l'équation de vitesse correspondant à la réaction. Exprimer l'évolution, en fonction du temps, de la concentration des ions ClO⁻ dans une solution où l'on provoque cette réaction.
- 2. On dispose, à l'instant t=0 d'une solution contenant des ions ClO¯, à la concentration $c_0=0.10\,\mathrm{mol}\cdot\mathrm{L}^{-1}.$
 - (a) Cette solution est portée à la température de 343 K pour laquelle la constante de vitesse de la réaction est : $k = 3.1 \cdot 10^{-3} \, \text{mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1}$. Au bout de combien de temps aura-t-on obtenu la disparition de 30 % des ions ClO⁻?
 - (b) L'énergie d'activation de la réaction vaut 47 kJ ⋅ mol⁻¹. Quel serait, à 363 K le temps nécessaire pour obtenir un même taux d'avancement (30%), à partir de la même solution initiale?

Exercice 3 : Substitution sur le bromoéthane

On étudie, à 25 °C l'action d'une solution de soude diluée sur le bromoéthane. La réaction totale a pour équation : $CH_3CH_2Br + OH^- \longrightarrow CH_3CH_2OH + Br^-$.

1. Dans cette première question, les réactifs sont introduits dans les proportions stœchiométriques et on note c_0 la concentration initiale en bromoéthane. On donne les temps de demi-réaction pour différentes

valeurs de
$$c_0$$
. $\begin{array}{c|cccc} c_0(1\cdot 10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1}) & 10 & 25 & 50 & 75 & 100 \\ \hline \tau_{1/2}(\mathrm{min}) & 1110 & 445 & 220 & 150 & 110 \end{array}$

- (a) Montrer que ces mesures sont compatibles sont compatibles avec une cinétique d'ordre 1 par rapport à chacun des réactifs. Déterminer la constante de vitesse de la réaction. On admet pour la suite que la cinétique est effectivement d'ordre 1 par rapport à chacun des réactifs.
- (b) Déterminer le temps de demi-réaction à $40\,^{\circ}$ C pour $c_0=5,0\cdot 10^{-2}\,\text{mol}\cdot\text{L}^{-1}$ sachant que l'énergie d'activation de cette réaction est $E_a=89\,\text{kJ}\cdot\text{mol}^{-1}$.
- 2. Arm Les quantités initiales de réactifs sont maintenant $[CH_3CH_2Br] = c_1$ et $[OH^-] = c_2$ quelconques.
 - (a) Établir l'équation différentielle d'évolution de l'avancement volumique x_V .
 - (b) Exprimer $\frac{1}{(c_1-x_v)(c_2-x_v)}$ sous la forme $\frac{\alpha_1}{c_1-x_v}+\frac{\alpha_2}{c_2-x_v}$, où α_1 et α_2 sont des constantes à déterminer. Résoudre alors l'équation différentielle et en déduire l'expression de x_v en fonction du temps.
 - (c) Définir et déterminer le temps de demi-réaction, pour $c_1 \leqslant c_2$ par exemple. Commenter les cas particuliers $c_1 = c_2$ et $c_2 \gg c_1$.

Exercice 4 : Pyrolyse du diméthyléther

On étudie, à 504 °C la pyrolyse du méthoxy-méthane ou diméthyléther CH₃OCH₃ dans un réacteur de volume constant. On assimilera le diméthyléther à un gaz parfait.

La mesure de la pression totale permet de calculer la pression partielle p de CH_3OCH_3 . On a obtenu les résultats suivants.

t(min)	0	5	9	15	20,5	25	32,5	38	46	70	90
p(kPa)	32,9	29,6	27,2	24,2	21,2	19,7	17,4	15,9	13,8	10,0	8,16

- 1. Tracer la courbe représentant p en fonction de t et en déduire la vitesse initiale v_0 de la réaction.
- 2. On a déterminé à 504 °C la vitesse initiale de la réaction v_0 pour diverses valeurs de la pression initiale p_0 de CH₃OCH₃.

$p_0(kPa)$	8,55	13,7	27,6	39,5	55,3
$v_0(\text{molm}^3/\text{min})$			0,0738	0,128	0,209

- (a) Si v_0 varie comme $[CH_3OCH_3]_0^n$, que faut-il tracer pour déterminer n par une simple régression linéaire?
- (b) Déterminer l'ordre de la réaction par rapport à CH₃OCH₃ en supposant que l'ordre initial est égal à l'ordre courant. En déduire la valeur de la constante de vitesse k.

3. La pyrolyse étudiée à plusieurs températures a conduit aux résultats suivants :

$\theta(^{\circ}C)$	477	497	517	537
θ (°C) k (1 · 10 ⁻³ L ^{1/2} mol ^{-1/2} /s)	1,23	3,17	7,74	18,13

Vérifier que cette réaction suit la loi d'Arrhenius et déterminer l'énergie d'activation de la réaction.

Exercice 5 : Dimérisation du butadiène

Le buta-1 , 3-diène (butadiène B), dans des conditions convenables de température et de pression, donne, en phase gazeuse, le 4-vinylcyclohex-1-ène $C_8H_{12}(D)$ selon la réaction 2B(g)=D(g) .

On étudie expérimentalement la réaction, à une température de 609 K maintenue constante, de la façon suivante. Dans un récipient préalablement vidé de volume constant $V_0 = 100,0\,\mathrm{cm}^{-3}$, on introduit du butadiène gazeux sous une pression initiale de 101,3 kPa. On constante que la pression totale décroît en fonction du temps :

t(s)	900	1800	3600	5400	7200	9000
p (kPa)	86,0	77,8	69,2	64,7	62,0	60,2

- 1. Dans les conditions précédentes, B et D sont gazeux et on les considérera comme des gaz parfaits. Monter que la vitesse de réaction est proportionnelle à $\frac{dp}{dt}$.
- 2. Montrer que pour une cinétique d'ordre 2 par rapport à B, $(p_0-p)/(2p-p_0)$ varie linéairement avec t.
- 3. Montrer alors que les résultats expérimentaux sont compatibles avec une cinétique d'ordre 2. Calculer la constante de vitesse et le temps de demi-réaction.

Exercice 6 : Hydrolyse d'un diester

On se propose d'étudier l'hydrolyse catalysée par l'acide chlorhydrique du diacétate de glycol A en monoacétate de glycol B, puis en glycol D dans des conditions telles que le schéma décrivant les réactions est (C

représentant l'acide acétique) : $\begin{cases} A &= B+C & \text{de constante } k_1 \\ B &= C+D & \text{de constante } k_2 \end{cases}$, chacune de ces réactions étant d'ordre 1

par rapport à son réactif. On désigne par a la concentration initiale en A, celles de B, C et D étant nulles. Au temps t, x représente la concentration de A ayant été transformé, y et z les concentrations de B et D formés.

- 1. Établir les concentrations des différentes espèces en fonction des avancements volumiques x_{v1} et x_{v2} des deux réactions. En déduire la relation entre x, y et z.
- 2. On étudie cette réaction en mesurant le degré d'acidité. En soustrayant l'acidité due au catalyseur, on en déduit la concentration [C] d'acide acétique formé par les deux réactions. Exprimer cette concentration en fonction de x,y et z.
- 3. (a) Établir les équations d'évolutions de [A], [B], [C] et [D]. On prêtera attention au fait que d[B]/dt fait intervenir les vitesses des deux réactions. En déduire l'expression de [A] en fonction du temps, puis celles de [B] et [D]. On vérifiera qu'on peut, pour [B] et [D], chercher des solutions sous la forme :

$$[X](t) = \alpha_X e^{-k_1 t} + \beta_X e^{-k_2 t}. \tag{1}$$

- (b) Montrer que [B] passe par un maximum qu'on déterminera.
- 4. (a) Déterminer [C](t). Quelle forme prend son expression pour $k_1 = 2k_2$?
 - (b) À 18 °C, pour a=0 , 50 mol.L $^{-1}$, on a obtenu les résultats suivants :

<i>t</i> (h)	7	24	31	48	55	72	80	120	336
[C](mol.L ⁻¹)	0,010	0,035	0,045	0,070	0,080	0,100	0,110	0,160	0,390 .

Montrer que ces valeurs sont compatibles avec les lois d'évolutions déterminées pour $k_1=2k_2$ Déterminer le maximum de la concentration de [B].

Cinétique macroscopique

Correction de l'exercice 1

- 1. (a) Pour une cinétique d'ordre 1 (nécessairement par rapport à $S_2O_8^{2-}$ puisque H_2O sera toujours en très grand excès), on doit avoir : $-\frac{d[S_2O_8^{2-}]}{dt} = k[S_2O_8^{2-}]$ et donc $[S_2O_8^{2-}] = c(t) = c_0 \exp{(-kt)}$.
 - (b) On a alors $c(t+\Delta t)/c(t)=\exp{(-k\Delta t)}=cste$. Comme les données expérimentales sont prises à des intervalles de temps $\Delta t=50$ min réguliers, on vérifie qu'on a d'un point à l'autre $c_{i+1}/c_i\simeq 0$, 78. On est bien en présence d'une cinétique d'ordre 1.
 - (c) On trace $\ln(c_0/c(t)) = kt$ en fonction du temps, on obtient par régression linéaire une droite de pente $k = 5.01 \cdot 10^{-3} \, \mathrm{min}^{-1}$.
- 2. On a k=A $e^{-E_a/(RT)}$, et donc $k_{25}=k_{80}$ $e^{(1/T_{80}-1/T_{25})}$ $E_a/R\simeq 7,50\cdot 10^{-7}$ min $^{-1}$. Pour avoir $c\geqslant 0$, 99 c_0 , on doit avoir $t\leqslant 1,33\cdot 10^4$ min, soit 9,30 jour.
- 3. Pour une cinétique du premier ordre, les temps caractéristiques de réaction ne dépendent pas de la concentration initiale. La durée sera donc inchangée.

Correction de l'exercice 2

- 1. On a $-\frac{d}{dt}[ClO^-] = k[ClO^-]^2$ et donc $[ClO^-] = \frac{c_0}{1+ktc_0}$
- 2. (a) On aura $[ClO^-]/c_0 = 0$, 7 pour $ktc_0 = 0$, 43, soit $t_{343} \simeq 1.38 \cdot 10^3$ s, soit 23 min.
 - (b) À $T=363\,\mathrm{K}$, la constante de vitesse vaut $k_{363}=k_{343}e^{(1/343-1/363)E_a/R}$ $7,69\cdot 10^{-3}\,\mathrm{mol}^{-1}\cdot\mathrm{L}\cdot\mathrm{s}^{-1}$. On obtient ensuite $t_{363}=3$, 1/7, $68\times t_{343}\simeq 9,3\,\mathrm{min}$.

Correction de l'exercice 3

- 1. (a) On vérifie que le produit $\tau_{1/2}c_0$ est pratiquement constant, caractéristique d'une cinétique d'ordre 2. Ceci est bien compatible avec une cinétique d'ordre 1 par rapport à chacun des réactifs s'ils sont introduits dans les proportions stœchiométriques.
 - (b) On aura plus précisément $\tau_{1/2}=\frac{1}{kc_0}$. On déduit des valeurs $k=\frac{1}{\tau_{1/2}c_0}=1.5\cdot 10^{-3}\,\mathrm{mol}^{-1}\cdot\mathrm{L}\cdot\mathrm{s}^{-1}$.
- 2. On sait que $\ln\frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)$ d'après la loi d'Arrhenius et si E_a varie peu sur l'intervalle de températures considéré. On en déduit $\tau_{1/2}(T_2)=\frac{1}{k(T_2)c_0}=\tau_{1/2}(T_1)e^{\frac{-E_a}{R}\frac{\Delta T}{T_1T_2}}=39,7$ min, bien réduit comme on s'y attend.
- 3. (a) La vitesse (volumique) v de la réaction vaut $v = \frac{\mathrm{d}x_v}{\mathrm{d}t} = k[\mathrm{CH_3CH_2Br}][\mathrm{OH-}] = k(c_1 x_v)(c_2 x_v)$.
 - (b) On a:

$$\frac{\alpha_1}{c_1 - x_v} + \frac{\alpha_2}{c_2 - x_v} = \frac{1}{(c_1 - x_v)(c_2 - x_v)} \Rightarrow \alpha_1 + \frac{\alpha_2(c_1 - x_v)}{c_2 - x_v} = \frac{1}{c_2 - x_v}.$$

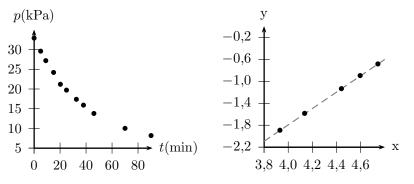
En évaluant cette égalité en $x_v=c_1$, on obtient $\alpha_1=\frac{1}{c_2-c_1}$. On obtient de même $\alpha_2=\frac{1}{c_1-c_2}$. On en déduit :

$$\frac{\mathrm{d} x_v}{(c_1-x_v)(c_2-x_v)} = k \mathrm{d} t \to \frac{1}{c_2-c_1} \left(\frac{\mathrm{d} x_v}{c_1-x_v} - \frac{\mathrm{d} x_v}{c_2-x_v} \right) = k \mathrm{d} t \to \ln \frac{1-x_v/c_2}{1-x_v/c_1} = (c_2-c_1)kt.$$

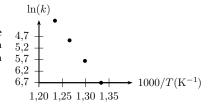
(c) Le temps de demi-réaction sera la durée pour laquelle la concentration du réactif limitant aura diminué de moitié. Si par exemple $c_1\leqslant c_2$, CH₃CH₂Br sera le réactif limitant et $\tau_{\frac{1}{2}}$ sera défini par $x_v=c_1/2$, soit $\tau_{\frac{1}{2}}=\frac{1}{(c_2-c_1)k}\ln{(2-c_1/c_2)}$. On retrouve bien $\tau_{\frac{1}{2}}=\frac{1}{kc}$ pour $c_1=c_2=c$ et $\tau_{\frac{1}{2}}=\frac{\ln{2}}{kc_2}$ pour $c_2\gg c_1$, ce qui correspond à la cinétique d'ordre 1 par rapport à 1 et de constante de vitesse apparente $k[c_2]$ qu'on obtient par la méthode d'isolement d'Ostwald.

Correction de l'exercice 4

1. On obtient la courbe ci-dessous. Initialement, on détermine $-\frac{\mathrm{d}}{\mathrm{d}t}\,p(t)=671\,\mathrm{Pa}\cdot\mathrm{min}^{-1}$. Comme $v=-\frac{\mathrm{d}}{\mathrm{d}t}[\mathrm{CH_3OCH_3}]=-\frac{\mathrm{d}}{\mathrm{d}t}\,p/(RT)$, on détermine $v_0=1,04\cdot10^{-4}\,\mathrm{mol}\cdot\mathrm{L}^{-1}\cdot\mathrm{min}^{-1}=1,73\cdot10^{-6}\,\mathrm{mol}\cdot\mathrm{L}^{-1}\cdot\mathrm{s}^{-1}$.



- 2. (a) Avec $v_0 = k[\text{CH}_3\text{OCH}_3]^n$, le tracé de $\log v_0$ en fonction de $\log(p_0)$ sera une droite de pente n et d'ordonnée à l'origine $\log(k/(RT)^n)$.
 - (b) On vérifie que cette courbe est bien une droite, de pente 1,49. L'ordre partiel par rapport à CH_3OCH_3 est donc 1,5. En veillant à prendre les pressions en pascal, L'ordonnée à l'origine -3,28 donne $k=9,02\,\mathrm{m}^{3/2}\mathrm{mol}^{-1/2}/\mathrm{min}=0,285\,\mathrm{L}^{1/2}\mathrm{mol}^{-1/2}/\mathrm{min}=4,8\cdot 10^{-3}\,\mathrm{L}^{1/2}\mathrm{mol}^{-1/2}/\mathrm{min}$.
- 3. La courbe de $\ln(k)$ en fonction de 1/T est une droite : la cinétique suit donc la loi d'Arrhenius. On obtient une pente $-E_a/R=27\cdot 10^{-3}\,\mathrm{K}$ d'où on sort $E_a=225\,\mathrm{kJ}\cdot\mathrm{mol}^{-1}$.



Correction de l'exercice 5

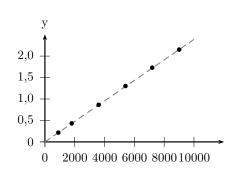
2 B(g)D(g)1. On a le tableau d'avancement : $n_0 - 2 \xi$ (mol) , en utilisant le taux de dimérisation ξ (mol) $n_0(1-\tau)$ (mol) $n_0\tau/2$ (mol)

 $\tau = 2\xi/n_0$. La pression totale vaut alors $p = n_{\text{tot}}RT/V_0 = (n_0 - \xi)RT/V_0 = p_0(1 - \tau/2)$, soit $\tau = 2(1 - p/p_0)$. La vitesse s'exprime selon : $v = -\frac{1}{2}\frac{d}{dt}[B] = \frac{d}{dt}[D] = \frac{d}{dt}(\xi/V)$.

2. Pour une cinétique d'ordre 2 par rapport à B, on aura

$$\frac{1}{[B]} - \frac{1}{[B]_0} = 2kt \to \frac{1}{1-\tau} - 1 = \frac{2kn_0}{V}t \to \frac{\tau}{1-\tau} = \frac{2kp_0}{RT}t \to \frac{(p_0-p)}{2p-p_0} = \frac{kp_0}{RT}t \to \frac{(p_0-p)}{RT}t \to \frac{(p_0-p)}{2p-p_0} = \frac{kp_0}{RT}t \to \frac{(p_0-p)}{2p-p_0} = \frac{(p_0-p)}{RT}t \to \frac{(p_0-p)}{RT}t$$

3. On trace la courbe représentant $(p_0 - p)/(2p - p_0)$ en fonction du temps, on obtient une droite de pente $kp_0/(RT) = 2.39 \cdot 10^{-4} \,\mathrm{s}^{-1}$, soit $k = 1.19 \cdot 10^{-5} \,\text{m}^3/\text{mol/s}$ $1.19 \cdot 10^{-2} \,\mathrm{L \cdot mol^{-1} \cdot s^{-1}}$. Comme on forme un quotient sans dimensions, on peut ici utiliser sans danger les valeurs en kPa et obtenir un k directement en m³/mol/s. Attention, ce n'est pas toujours le cas (voir l'exercice précédent) et en règle générale, l'utilisation d'unités non standard nécessite de bien réfléchir à l'unité dans laquelle on obtient k. Le temps de 1/2 réaction $\tau_{1/2}$ est atteint quand $[B] = [B]_0/2$, soit $p = 3p_0/4$ et $kp_0\tau_{1/2}/(RT) = 1/2 : \tau = 2088 \,\mathrm{s}.$



Correction de l'exercice 6

1. On établit les bilans des deux réactions selon :

On Ctabilt	ics bilaris acs	acax reaction	<u> </u>	1011 .				_
A :	= B	+ C		B	=	C	+ D	
a	0	0	et	0		0	0	. On a ainsi $x=x_{v1}$, $y=$
$a-x_{v1}$	$x_{v1}-x_{v2}$	$x_{v1} + x_{v2}$		$x_{v1} - x_{v2}$:	$x_{v1} + x_{v2}$	x_{v2}	
$x_{v,1} - x_{v,2}$	et $z = x_{v2}$, so	oit $x = y + z$.	_					_

- 2. On a immédiatement [C] = y + 2z.
- $\frac{\mathrm{d}t}{\mathrm{d}t} = -k_1[A]$ $\frac{\mathrm{d}[B]}{\mathrm{d}t} = k_1[A] k_2[B]$ $\frac{\mathrm{d}[C]}{\mathrm{d}t} = k_1[A] + k_2[B]$ $\frac{\mathrm{d}[D]}{\mathrm{d}[D]} = k_0[B]$ La première s'intègre immédiatement pour 3. (a) Les lois d'évolution sont :

donner $[A] = ae^{-k_1t}$, soit $x = a(1 - e^{-k_1t})$. L'équation d'évolution de [B] devient alors :

 $\frac{\mathrm{d}[B]}{\mathrm{d}t} + k_2[B] = k_1[A] = k_1 a e^{-k_1 t}$. On cherche une solution particulière en $\alpha e^{-k_1 t}$ (pour $k_2 \neq k_1$) dont le terme α doit vérifier $-k_1\alpha + k_2\alpha = k_1a$, soit $\alpha = \frac{ak_1}{k_2 - k_1}$. La solution vérifiant la condition initiale [B](0) = 0 est alors $[B] = a \frac{k_1}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right)$, toujours positif quelles que soient k_1 et k_2 .

On ne résout surtout pas l'équation différentielle pour déterminer [D], on utilise plutôt x=y+zpour obtenir [D] = a - [A] - [B], soit $[D] = a \left(1 - \frac{k_2 e^{-k_1 t} - k_1 e^{-k_2 t}}{k_2 - k_1}\right)$

(b) La résolution de $\frac{d[B]}{dt} = 0$ donne $t = \frac{\ln(k_2/k_1)}{k_2-k_1}$ dont on s'assure qu'il est toujours positif quelles que soient k_1 et k_2 , le maximum vaut ainsi :

$$\begin{split} [B]_{\text{max}} &= \frac{ak_1}{k_2 - k_1} \left(\exp\left(\frac{k_1}{k_1 - k_2} \ln(k_2/k_1)\right) - \exp\left(\frac{k_2}{k_1 - k_2} \ln(k_2/k_1)\right) \right) \\ &= \frac{ak_1}{k_2 - k_1} \left(\frac{k_2}{k_1}\right)^{\frac{k_2}{k_1 - k_2}} \left(\frac{k_2}{k_1} - 1\right) = a\left(\frac{k_2}{k_1}\right)^{\frac{k_2}{k_1 - k_2}} \end{split}$$

4. La concentration [C] vaut [C] = [B] + 2[D], soit

pour $k_1 = 2k_2$. On obtient ici une cinétique d'ordre 1 pour l'évolution de [C].

5. On trace $-\ln(1-[C]/(2a))$ qui devrait être une droite de pente k_1 pour $k_1 = 2k_2$. On obtient les points ci-contre, bien alignés. Une régression linéaire donne $k_1 = 1,47.10^{-3} h^{-1}$. Le maximum de [B], atteint pour $t = \ln(2)/k_1 \simeq 471 \,\mathrm{h}$ vaudra $[B]_{\mathrm{max}} = a/2 =$ $0.25 \,\mathrm{mol}\cdot\mathrm{L}^{-1}$.

