

Circuit fixe dans un champ magnétique variable

Julien Cubizolles

Lycée Louis le Grand

Lundi 18 juin 2018

Circuit fixe dans un champ magnétique variable

Julien Cubizolles

Lycée Louis le Grand

Lundi 18 juin 2018

▶ dans l'induction de neumann, on étudie un circuit fixe, une bobine le plus souvent, soumise à *B* variable

- dans l'induction de neumann, on étudie un circuit fixe, une bobine le plus souvent, soumise à B variable
- on s'intéresse à deux phénomènes particuliers

- ▶ dans l'induction de neumann, on étudie un circuit fixe, une bobine le plus souvent, soumise à *B* variable
- on s'intéresse à deux phénomènes particuliers
 - ▶ l'effet du champ magnétique d'une bobine sur elle-même qui redonnera L l'auto inductance

- ▶ dans l'induction de neumann, on étudie un circuit fixe, une bobine le plus souvent, soumise à *B* variable
- on s'intéresse à deux phénomènes particuliers
 - l'effet du champ magnétique d'une bobine sur elle-même qui redonnera L l'auto inductance
 - le couplage entre deux circuits électriques sans connexion électrique, par l'effet du champ magnétique variable d'une bobine sur une autre, utilisé dans les transformateurs

1. Autoinduction dans une bobine

2. Interaction magnétique entre deux bobines

- 1. Autoinduction dans une bobine
- 1.1 Flux propre et inductance propre
- 1.2 Auto-induction en électrocinétique
- 2. Interaction magnétique entre deux bobines

- ▶ une spire circulaire orientée, parcourue par *i*
- le courant i produit un champ magnétique $\overrightarrow{B_p}$ dit propre
- ▶ la spire enlace les lignes du champ $\overrightarrow{B_p}$: le flux de \overrightarrow{B} à travers la spire, dit propre est non nul

- une spire circulaire orientée, parcourue par i
- le courant i produit un champ magnétique $\overrightarrow{B_p}$ dit propre
- ▶ la spire enlace les lignes du champ $\overrightarrow{B_p}$: le flux de \overrightarrow{B} à travers la spire, dit propre est non nul

Définition (Flux propre)

On nomme flux propre le flux du champ magnétique produit par le courant d'intensité i parcourant un circuit fermé plan à travers ce même circuit.

- ightharpoonup une spire circulaire orientée, parcourue par \underline{i}
- le courant i produit un champ magnétique $\overrightarrow{B_p}$ dit propre
- ▶ la spire enlace les lignes du champ $\overrightarrow{B_p}$: le flux de \overrightarrow{B} à travers la spire, dit propre est non nul

Définition (Flux propre)

On nomme flux propre le flux du champ magnétique produit par le courant d'intensité i parcourant un circuit fermé plan à travers ce même circuit.

- une spire circulaire orientée, parcourue par <u>i</u>
- le courant i produit un champ magnétique $\overrightarrow{B_p}$ dit propre
- ▶ la spire enlace les lignes du champ $\overrightarrow{B_p}$: le flux de \overrightarrow{B} à travers la spire, dit propre est non nul

Définition (Flux propre)

On nomme flux propre le flux du champ magnétique produit par le courant d'intensité i parcourant un circuit fermé plan à travers ce même circuit.

une bobine est modélisable par un ensemble de spires fermées planes parcourues par le même courant :

$$\Phi(\mathsf{bobine}) = \sum_i \Phi(\mathsf{spire}_i)$$

on ne se limitera donc pas à des circuits plans : il suffit qu'ils soient fermés

Définition (Flux propre)

On nomme flux propre le flux du champ magnétique produit par le courant d'intensité i parcourant un circuit fermé plan à travers ce même circuit.

une bobine est modélisable par un ensemble de spires fermées planes parcourues par le même courant :

$$\Phi(\mathsf{bobine}) = \sum_i \Phi(\mathsf{spire}_i)$$

on ne se limitera donc pas à des circuits plans : il suffit qu'ils soient fermés

 $ightharpoonup \vec{B}$ en tout point proportionnel à *i*

Définition (Flux propre)

On nomme flux propre le flux du champ magnétique produit par le courant d'intensité i parcourant un circuit fermé plan à travers ce même circuit.

Inductance propre

Le flux propre à travers un circuit fermé \mathcal{C} , noté Φ_p est proportionnel à l'intensité i du courant parcourant \mathcal{C} . On définit l'inductance propre du circuit par :

$$\Phi_p = Li$$

Définition (Flux propre)

On nomme flux propre le flux du champ magnétique produit par le courant d'intensité i parcourant un circuit fermé plan à travers ce même circuit.

Inductance propre

Le flux propre à travers un circuit fermé \mathcal{C} , noté Φ_p est proportionnel à l'intensité i du courant parcourant \mathcal{C} . On définit l'inductance propre du circuit par :

$$\Phi_p = Li$$

- L en Wb · A⁻¹ = H car $\left[\frac{d\Phi}{dt}\right] = e = \left[L\frac{di}{dt}\right]$
- le même vecteur \vec{n} oriente le sens de parcours et le sens de traversé de la surface donc L est une constante positive
- aussi nommée auto-inductance, « self-inductance » en anglais, abrévié en « self » en anglais et en français

le circuit peut aussi être soumis à champ $\overrightarrow{B_{\rm ext}}$ extérieur (aimant, autre bobine)

- le circuit peut aussi être soumis à champ $\overrightarrow{B_{\rm ext}}$ extérieur (aimant, autre bobine)
- le flux total est $\Phi = \Phi_p + \Phi_{\mathsf{ext}}$

- le circuit peut aussi être soumis à champ $\overrightarrow{B}_{\rm ext}$ extérieur (aimant, autre bobine)
- le flux total est $\Phi = \Phi_p + \Phi_{\text{ext}}$
- la loi de Faraday s'écrit :

$$e_{\mathsf{ind}} = -\frac{\mathrm{d}\Phi_p}{\mathrm{d}t} - \frac{\mathrm{d}\Phi_{\mathsf{ext}}}{\mathrm{d}t}$$

- le circuit peut aussi être soumis à champ $\overrightarrow{B_{\rm ext}}$ extérieur (aimant, autre bobine)
- le flux total est $\Phi = \Phi_p + \Phi_{\text{ext}}$
- la loi de Faraday s'écrit :

$$e_{\mathsf{ind}} = -\frac{\mathrm{d}\Phi_p}{\mathrm{d}t} - \frac{\mathrm{d}\Phi_{\mathsf{ext}}}{\mathrm{d}t}$$

• $\Phi_{\rm ext}$ est indépendant du courant i parcourant le circuit, Φ_p est indépendant du champ extérieur $\overrightarrow{B_{\rm ext}}$

$$ightharpoonup B_p \simeq rac{\mu_0 i}{R}$$

- \blacktriangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour $R = 2 \text{ cm}, L \simeq 2 \cdot 10^{-8} \text{ H}$

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour $R = 2 \text{ cm}, L \simeq 2 \cdot 10^{-8} \text{ H}$

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- Pour $R = 2 \text{ cm}, L \simeq 2 \cdot 10^{-8} \text{ H}$

bobine de longueur ℓ , de N spires de rayon R moins grossier

assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=\frac{\mu_0 Ni}{\ell}$ uniforme dans la bobine

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_v \simeq B_v \pi R^2 \simeq \mu_0 iR$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour R = 2 cm, $L \simeq 2 \cdot 10^{-8}$ H

- ▶ assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p = \mu_0 n i = \frac{\mu_0 N i}{\ell}$ uniforme dans la bobine

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour $R = 2 \text{ cm}, L \simeq 2 \cdot 10^{-8} \text{ H}$

- **>** assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p = \mu_0 ni = \frac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $\Phi_p = N B_p \pi R^2 = \frac{\mu_0 \pi N^2 i R^2}{\ell}$
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_v \simeq B_v \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour R = 2 cm, $L \simeq 2 \cdot 10^{-8}$ H

- assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=rac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$
- \(\mathbb{Z} : N \) intervient à la fois dans l'intensité du champ et dans l'aire
 pour le calcul du flux
 \)

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_v \simeq B_v \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour R = 2 cm, $L \simeq 2 \cdot 10^{-8}$ H

- assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=rac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$
- \(\mathbb{Z} : N \) intervient à la fois dans l'intensité du champ et dans l'aire
 pour le calcul du flux
 \)

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_v \simeq B_v \pi R^2 \simeq \mu_0 iR$ (croissant avec R), soit $L \simeq \mu_0 R$
- Pour $R = 2 \text{ cm}, L \simeq 2 \cdot 10^{-8} \text{ H}$

bobine de longueur ℓ , de N spires de rayon R moins grossier

- assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=\frac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $\Phi_p = NB_p \pi R^2 = \frac{\mu_0 \pi N^2 i R^2}{\ell}$
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$
- \(\mathbb{Z} : N \) intervient à la fois dans l'intensité du champ et dans l'aire
 pour le calcul du flux
 \)

noyau ferromagnétique un matériau ferromagnétique dans la bobine s'aimante : le champ total sera plus important dans la bobine (somme du champ du courant et de celui du fer)

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour R = 2 cm, $L \simeq 2 \cdot 10^{-8}$ H

- assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=\frac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$
- \(\mathbb{Z}\): N intervient à la fois dans l'intensité du champ et dans l'aire pour le calcul du flux
- noyau ferromagnétique un matériau ferromagnétique dans la bobine s'aimante : le champ total sera plus important dans la bobine (somme du champ du courant et de celui du fer)
 - ightharpoonup caractérisé par la perméabilité relative $\mu_r:\mu_0$ devient $\mu_0\mu_r$

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- Pour R = 2 cm, $L \simeq 2 \cdot 10^{-8}$ H

- assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=\frac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$
- \(\mathbb{Z}\) : N intervient à la fois dans l'intensité du champ et dans l'aire pour le calcul du flux
- noyau ferromagnétique un matériau ferromagnétique dans la bobine s'aimante : le champ total sera plus important dans la bobine (somme du champ du courant et de celui du fer)
 - ightharpoonup caractérisé par la perméabilité relative $\mu_r:\mu_0$ devient $\mu_0\mu_r$
 - L sera multipliée par μ_r qui peut atteindre 1000

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_v \simeq B_v \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- pour R = 2 cm, $L \simeq 2 \cdot 10^{-8}$ H

- assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=\frac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$
- \(\mathbb{Z}\): N intervient à la fois dans l'intensité du champ et dans l'aire pour le calcul du flux
- noyau ferromagnétique un matériau ferromagnétique dans la bobine s'aimante : le champ total sera plus important dans la bobine (somme du champ du courant et de celui du fer)
 - ightharpoonup caractérisé par la perméabilité relative $\mu_r:\mu_0$ devient $\mu_0\mu_r$
 - L sera multipliée par μ_r qui peut atteindre 1000
 - les lignes de champ sont canalisées par le noyau

spire circulaire de rayon R très grossier

- \triangleright $B_p \simeq \frac{\mu_0 i}{R}$
- flux $\Phi_p \simeq B_p \pi R^2 \simeq \mu_0 i R$ (croissant avec R), soit $L \simeq \mu_0 R$
- Pour $R = 2 \text{ cm}, L \simeq 2 \cdot 10^{-8} \text{ H}$

- assimilée à un solénoïde infini de N/ℓ spires par mètre : $B_p=\mu_0 ni=\frac{\mu_0 Ni}{\ell}$ uniforme dans la bobine
- $\Phi_p = NB_p \pi R^2 = \frac{\mu_0 \pi N^2 i R^2}{\ell}$
- $L = \frac{\mu_0 \pi N^2 R^2}{\ell} \simeq 1 \cdot 10^{-2} \,\mathrm{H},$
- \(\mathbb{Z} : N \) intervient à la fois dans l'intensité du champ et dans l'aire
 pour le calcul du flux
 \)
- noyau ferromagnétique un matériau ferromagnétique dans la bobine s'aimante : le champ total sera plus important dans la bobine (somme du champ du courant et de celui du fer)
 - lacktriangle caractérisé par la perméabilité relative $\mu_r:\mu_0$ devient $\mu_0\mu_r$
 - L sera multipliée par μ_r qui peut atteindre 1000
 - les lignes de champ sont canalisées par le noyau
 - le noyau est feuilleté pour limiter les courants de Foucault

- 1. Autoinduction dans une bobine
- 1.1 Flux propre et inductance propre
- 1.2 Auto-induction en électrocinétique
- 2. Interaction magnétique entre deux bobines

Loi de Faraday

d'après la loi de Faraday $e_{\rm auto}=-{{
m d} Li\over {
m d}t}$: la tension (convention générateur) est :

- ► négative si *i* croît
- positive si *i* décroît
- elle s'oppose à ses causes (variation de i) comme la loi de Lenz l'affirme

on considère:

d'après la loi de Faraday $e_{\rm auto}=-\frac{{
m d} Li}{{
m d}t}$: la tension (convention générateur) est :

- négative si i croît
- positive si *i* décroît
- elle s'oppose à ses causes (variation de i) comme la loi de Lenz l'affirme

on considère:

une bobine idéale (sans résistance) dans un circuit électrique, sans $\overrightarrow{B}_{\text{ext}}$, parcourue par i variable

d'après la loi de Faraday $e_{\rm auto}=-\frac{{
m d} Li}{{
m d}t}$: la tension (convention générateur) est :

- négative si i croît
- positive si *i* décroît
- elle s'oppose à ses causes (variation de i) comme la loi de Lenz l'affirme

on considère:

- une bobine idéale (sans résistance) dans un circuit électrique, sans $\overrightarrow{B}_{\text{ext}}$, parcourue par i variable
- la loi Faraday donne la tension à ses bornes en convention générateur $e_{\rm auto} = -\frac{{
 m d}\Phi}{{
 m d}t} = -L\frac{{
 m d}i}{{
 m d}t}$, en la considérant comme un générateur de tension

d'après la loi de Faraday $e_{\rm auto}=-\frac{{
m d} Li}{{
m d}t}$: la tension (convention générateur) est :

- négative si i croît
- positive si *i* décroît
- elle s'oppose à ses causes (variation de i) comme la loi de Lenz l'affirme

on considère:

- une bobine idéale (sans résistance) dans un circuit électrique, sans $\overrightarrow{B}_{\text{ext}}$, parcourue par i variable
- la loi Faraday donne la tension à ses bornes en convention générateur $e_{\rm auto} = -\frac{{
 m d}\Phi}{{
 m d}t} = -L\frac{{
 m d}i}{{
 m d}t}$, en la considérant comme un générateur de tension
- en convention récepteur, on retrouve $u=+L\frac{\mathrm{d}i}{\mathrm{d}t}$, affirmé en électrocinétique

d'après la loi de Faraday $e_{\rm auto}=-\frac{{
m d} Li}{{
m d}t}$: la tension (convention générateur) est :

- négative si i croît
- positive si *i* décroît
- elle s'oppose à ses causes (variation de i) comme la loi de Lenz l'affirme

on considère:

- une bobine idéale (sans résistance) dans un circuit électrique, sans $\overrightarrow{B}_{\text{ext}}$, parcourue par i variable
- la loi Faraday donne la tension à ses bornes en convention générateur $e_{\rm auto} = -\frac{{
 m d}\Phi}{{
 m d}t} = -L\frac{{
 m d}i}{{
 m d}t}$, en la considérant comme un générateur de tension
- en convention récepteur, on retrouve $u = +L\frac{\mathrm{d}i}{\mathrm{d}t}$, affirmé en électrocinétique

association série d'un générateur de tension E d'une bobine de résistance R et d'auto-inductance L, orientation de l'ensemble du circuit

- association série d'un générateur de tension E d'une bobine de résistance R et d'auto-inductance L, orientation de l'ensemble du circuit
- ▶ loi des mailles :

$$E = Ri - e = Ri + L\frac{\mathrm{d}i}{\mathrm{d}t}$$

on calcule les puissances :

$$Ei = Ri^2 + iL\frac{\mathrm{d}i}{\mathrm{d}t} = Ri^2 + \frac{\mathrm{d}Li^2/2}{\mathrm{d}t}$$

▶ la puissance fournie par le générateur est dissipée par effet Joule pour partie et reçue par la bobine

on calcule les puissances :

$$Ei = Ri^2 + iL\frac{\mathrm{d}i}{\mathrm{d}t} = Ri^2 + \frac{\mathrm{d}Li^2/2}{\mathrm{d}t}$$

▶ la puissance fournie par le générateur est dissipée par effet Joule pour partie et reçue par la bobine

on calcule les puissances :

$$Ei = Ri^2 + iL\frac{\mathrm{d}i}{\mathrm{d}t} = Ri^2 + \frac{\mathrm{d}Li^2/2}{\mathrm{d}t}$$

- la puissance fournie par le générateur est dissipée par effet Joule pour partie et reçue par la bobine
- on calcule les énergies :

$$\int_{0}^{t} Ei \, dt = \int_{0}^{t} Ri(t)^{2} \, dt + \frac{L}{2} \left(i(t)^{2} - i(0)^{2} \right)$$

on calcule les puissances :

$$Ei = Ri^2 + iL\frac{\mathrm{d}i}{\mathrm{d}t} = Ri^2 + \frac{\mathrm{d}Li^2/2}{\mathrm{d}t}$$

- la puissance fournie par le générateur est dissipée par effet Joule pour partie et reçue par la bobine
- on calcule les énergies :

$$\int_{0}^{t} Ei \, dt = \int_{0}^{t} Ri(t)^{2} \, dt + \frac{L}{2} \left(i(t)^{2} - i(0)^{2} \right)$$

l'énergie fournie par le générateur a été dissipée par effet Joule en partie et stockée dans le champ magnétique de la bobine : c'est l'énergie magnétique $\frac{1}{2}Li^2$ de l'électrocinétique

on calcule les puissances :

$$Ei = Ri^2 + iL\frac{\mathrm{d}i}{\mathrm{d}t} = Ri^2 + \frac{\mathrm{d}Li^2/2}{\mathrm{d}t}$$

- la puissance fournie par le générateur est dissipée par effet Joule pour partie et reçue par la bobine
- on calcule les énergies :

$$\int_{0}^{t} Ei \, dt = \int_{0}^{t} Ri(t)^{2} \, dt + \frac{L}{2} \left(i(t)^{2} - i(0)^{2} \right)$$

- l'énergie fournie par le générateur a été dissipée par effet Joule en partie et stockée dans le champ magnétique de la bobine : c'est l'énergie magnétique $\frac{1}{2}Li^2$ de l'électrocinétique
- ▶ à un champ \overrightarrow{B} dans un volume est associé une énergie volumique (idem pour un champ \overrightarrow{E} , négligeable dans cette configuration)

on calcule les puissances :

$$Ei = Ri^2 + iL\frac{\mathrm{d}i}{\mathrm{d}t} = Ri^2 + \frac{\mathrm{d}Li^2/2}{\mathrm{d}t}$$

- la puissance fournie par le générateur est dissipée par effet Joule pour partie et reçue par la bobine
- on calcule les énergies :

$$\int_{0}^{t} Ei \, dt = \int_{0}^{t} Ri(t)^{2} \, dt + \frac{L}{2} \left(i(t)^{2} - i(0)^{2} \right)$$

- ▶ l'énergie fournie par le générateur a été dissipée par effet Joule en partie et stockée dans le champ magnétique de la bobine : c'est l'énergie magnétique ½Li² de l'électrocinétique
- ▶ à un champ \overrightarrow{B} dans un volume est associé une énergie volumique (idem pour un champ \overrightarrow{E} , négligeable dans cette configuration)
- li faut fournir un travail pour créer un champ magnétique

Mesure de L

les modèles précédents ne donnent que des ordres de grandeur, on mesurera ${\cal L}$ par :

• mesure de $\tau = L/R$ dans un circuit R, L de R connue,

Mesure de L

les modèles précédents ne donnent que des ordres de grandeur, on mesurera L par :

- mesure de $\tau = L/R$ dans un circuit R, L de R connue,
- ightharpoonup mesure d'impédance j $L\omega$ de la bobine à une pulsation ω connue

Mesure de L

les modèles précédents ne donnent que des ordres de grandeur, on mesurera L par :

- mesure de $\tau = L/R$ dans un circuit R, L de R connue,
- ightharpoonup mesure d'impédance j $L\omega$ de la bobine à une pulsation ω connue
- mesure de la pulsation de coupure R/L sur le diagramme de Bode d'un passe-haut

- 1. Autoinduction dans une bobine
- 2. Interaction magnétique entre deux bobines

1. Autoinduction dans une bobine

- 2. Interaction magnétique entre deux bobines
- 2.1 Inductance mutuelle
- 2.2 Couplage entre deux circuits électriques
- 2.3 Transformateur

 \blacktriangleright deux bobines \mathcal{B}_1 et \mathcal{B}_2 à proximité, sans connexion électrique

- \blacktriangleright deux bobines \mathcal{B}_1 et \mathcal{B}_2 à proximité, sans connexion électrique
- lacktriangle on impose une tension variable à \mathcal{B}_1 , il apparaît une tension dans \mathcal{B}_2

- deux bobines \mathcal{B}_1 et \mathcal{B}_2 à proximité, sans connexion électrique
- lacktriangle on impose une tension variable à \mathcal{B}_1 , il apparaît une tension dans \mathcal{B}_2
- le champ variable de \mathcal{B}_1 crée un flux variable dans \mathcal{B}_2 , qui y induit une tension

- \triangleright deux bobines \mathcal{B}_1 et \mathcal{B}_2 à proximité, sans connexion électrique
- lacktriangle on impose une tension variable à \mathcal{B}_1 , il apparaît une tension dans \mathcal{B}_2
- le champ variable de \mathcal{B}_1 crée un flux variable dans \mathcal{B}_2 , qui y induit une tension
- une tension constante n'induit pas de tension

Définition

le flux du champ de \mathcal{B}_1 à travers \mathcal{B}_2 est proportionnel au courant dans \mathcal{B}_1

Définition

Définition (Inductance mutuelle de deux bobines)

Soient deux bobines \mathcal{B}_1 et \mathcal{B}_2 orientées, parcourues par des courants d'intensités algébriques respectives i_1 et i_2 .

Le flux propre du champ magnétique créé par \mathcal{B}_2 à travers elle-même est donné par :

$$\Phi_2 = L_2 i_2,$$

avec L_2 l'inductance propre de \mathcal{B}_2 .

Le flux du champ magnétique créé par \mathcal{B}_1 à travers \mathcal{B}_2 , noté $\Phi_{1 \to 2}$, est proportionnel à i_1 ; on définit donc l'inductance mutuelle de \mathcal{B}_1 sur \mathcal{B}_2 , notée $M_{1 \to 2}$ par :

$$\Phi_{1\to 2}=i_1M_{1\to 2}$$

Le flux total à travers \mathcal{B}_2 , noté Φ_{2t} , est alors :

$$\Phi_{2t} = L_2 i_2 + M_{1\to 2} i_1.$$

On a de même:

$$\Phi_{1t} = L_1 i_1 + M_{2 \to 1} i_2$$
.

21/29

Définition

- ► M s'exprime aussi en henry
- règle des points pour orienter les courants pour avoir $M\geqslant 0$
- on choisira les orientations relatives de \mathcal{B}_1 et \mathcal{B}_2 pour que les M soient positives
- L dépend de la géométrie de la bobine, M dépend des géométries des deux bobines et de leur orientation relative : d'autant plus élevée que les bobines sont proches et d'axes alignés
- on peut augmenter M en utilisant un noyau de fer doux pour canaliser les lignes de champ
- valable pour tout conducteur, pas seulement une bobine

Relation de Neumann

on peut exprimer (formule de Biot et Savart donnant \overrightarrow{B}) M à l'aide de la relation de Neumann qui assure que :

Symétrie des inductances mutuelles

Les inductances mutuelles $M_{1\rightarrow 2}$ et $M_{2\rightarrow 1}$ sont égales quels que soient les conducteurs 1 et 2. On les notera donc M.

• deux bobines en influence totale, ie (en gros) toute ligne de \vec{B} traversant \mathcal{B}_1 traverse aussi \mathcal{B}_2

- deux bobines en influence totale, ie (en gros) toute ligne de \overrightarrow{B} traversant \mathcal{B}_1 traverse aussi \mathcal{B}_2
- chaque bobine modélisée par un solénoïde long de N_p spires (p=1,2) parcouru par i_p

- deux bobines en influence totale, ie (en gros) toute ligne de \vec{B} traversant \mathcal{B}_1 traverse aussi \mathcal{B}_2
- ► chaque bobine modélisée par un solénoïde long de N_p spires (p = 1, 2) parcouru par i_p
- les deux imbriqués l'un dans l'autre, de même aire S de même longueur ℓ pour assurer l'influence totale (bobine toroidale)

- deux bobines en influence totale, ie (en gros) toute ligne de \overrightarrow{B} traversant \mathcal{B}_1 traverse aussi \mathcal{B}_2
- chaque bobine modélisée par un solénoïde long de N_p spires $(p=1\,,2)$ parcouru par i_p
- les deux imbriqués l'un dans l'autre, de même aire S de même longueur ℓ pour assurer l'influence totale (bobine toroidale)
- ightharpoonup on a $\overrightarrow{B_p}=rac{\mu_0N_pi_p}{\ell}\overrightarrow{e_z}$ uniforme dans les bobines

- deux bobines en influence totale, ie (en gros) toute ligne de \overrightarrow{B} traversant \mathcal{B}_1 traverse aussi \mathcal{B}_2
- chaque bobine modélisée par un solénoïde long de N_p spires $(p=1\,,2)$ parcouru par i_p
- les deux imbriqués l'un dans l'autre, de même aire S de même longueur ℓ pour assurer l'influence totale (bobine toroidale)
- ightharpoonup on a $\overrightarrow{B_p}=rac{\mu_0N_pi_p}{\ell}\overrightarrow{e_z}$ uniforme dans les bobines
- on calcule:

$$\Phi_{1\to 2} = \frac{\mu_0 N_1 i_1}{\ell} \times N_2 S \quad \Phi_2 = \frac{\mu_0 N_2 i_2}{\ell} \times N_2 S$$

- deux bobines en influence totale, ie (en gros) toute ligne de \vec{B} traversant \mathcal{B}_1 traverse aussi \mathcal{B}_2
- chaque bobine modélisée par un solénoïde long de N_p spires $(p=1\,,2)$ parcouru par i_p
- les deux imbriqués l'un dans l'autre, de même aire S de même longueur ℓ pour assurer l'influence totale (bobine toroidale)
- ightharpoonup on a $\overrightarrow{B_p}=rac{\mu_0N_pi_p}{\ell}\overrightarrow{e_z}$ uniforme dans les bobines
- on calcule:

$$\Phi_{1\to 2} = \frac{\mu_0 N_1 i_1}{\ell} \times N_2 S \quad \Phi_2 = \frac{\mu_0 N_2 i_2}{\ell} \times N_2 S$$

on a donc :

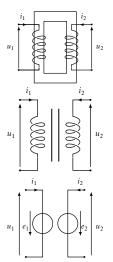
$$L_p = \frac{\mu_0 N_p^2 S}{\ell}$$
 et $M_{1\to 2} = M_{2\to 1} = \frac{\mu_0 N_1 N_2 S}{\ell} \equiv M$

- 1. Autoinduction dans une bobine
- 2. Interaction magnétique entre deux bobines
- 2.1 Inductance mutuelle
- 2.2 Couplage entre deux circuits électriques
- 2.3 Transformateur

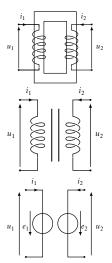
Équations couplées

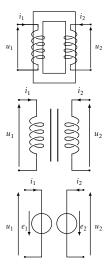
- les variations temporelles de champ \overrightarrow{B} dans un circuit pourront être ressenties dans un autre circuit
- on couple ainsi deux circuits, sans connexion électrique

Équations couplées

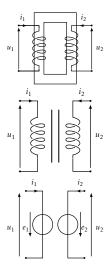


Équations couplées

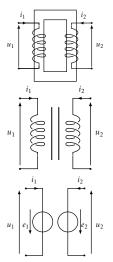


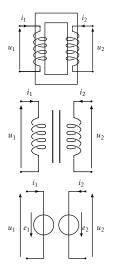


 chaque bobine caractérisée par R, L; leur couplage caractérisé par M

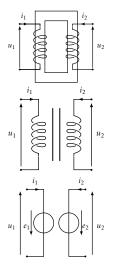


- chaque bobine caractérisée par R, L; leur couplage caractérisé par M
- les conventions choisies permettent d'avoir $M \geqslant 0$



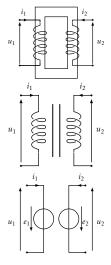


Faraday :
$$e_1 = -\frac{d\Phi_{1t}}{dt} = -L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$



- Faraday : $e_1 = -\frac{d\Phi_{1t}}{dt} = -L_1 \frac{di_1}{dt} M \frac{di_2}{dt}$
- loi des mailles dans chaque circuit :

$$u_{1} = R_{1}i_{1} + L_{1}\frac{di_{1}}{dt} + M\frac{di_{2}}{dt}$$
$$u_{2} = R_{2}i_{2} + L_{2}\frac{di_{2}}{dt} + M\frac{di_{1}}{dt}$$



Faraday :
$$e_1 = -\frac{d\Phi_{1t}}{dt} = -L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$

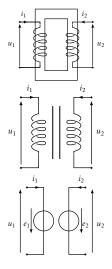
loi des mailles dans chaque circuit :

$$u_1 = R_1 i_1 + L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$
$$u_2 = R_2 i_2 + L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$$

en régime sinusoïdal établi :

$$\underline{U_1} = R_1 \underline{I_1} + j \underline{L_1 \omega I_1} + j \underline{M \omega I_2}$$

$$\underline{U_2} = R_2 \underline{I_2} + j \underline{L_2 \omega I_2} + j \underline{M \omega I_1}$$



Faraday :
$$e_1 = -\frac{d\Phi_{1t}}{dt} = -L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$

loi des mailles dans chaque circuit :

$$u_1 = R_1 i_1 + L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$
$$u_2 = R_2 i_2 + L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$$

en régime sinusoïdal établi :

$$\frac{U_1}{U_2} = R_1 \underline{I_1} + j \underline{L_1 \omega I_1} + j \underline{M \omega I_2}$$

$$U_2 = R_2 \underline{I_2} + j \underline{L_2 \omega I_2} + j \underline{M \omega I_1}$$

pas de couplage en régime stationnaire (continu) : U_1 et U_2 sont indépendantes, en particulier $I_2 = 0$ si on n'a pas de dipôle actif en 2 quel que soit U_1

- 1. Autoinduction dans une bobine
- 2. Interaction magnétique entre deux bobines
- 2.1 Inductance mutuelle
- 2.2 Couplage entre deux circuits électriques
- 2.3 Transformateur

- $ightharpoonup \mathcal{B}_1$ est nommée circuit primaire, \mathcal{B}_2 circuit secondaire
- on admet que pour un transformateur idéal, les deux bobines sont en influence totale, on a alors :

- \triangleright \mathcal{B}_1 est nommée circuit primaire, \mathcal{B}_2 circuit secondaire
- on admet que pour un transformateur idéal, les deux bobines sont en influence totale, on a alors :

Définition (Transformateur idéal)

Dans un transformateur idéal, les résistances internes des bobines sont nulles et les inductances vérifient :

$$L_1 = kN_1^2$$
 $L_2 = kN_2^2$ $M = \sqrt{L_1L_2} = kN_1N_2$,

avec *k* une constante positive.

Définition (Transformateur idéal)

Dans un transformateur idéal, les résistances internes des bobines sont nulles et les inductances vérifient :

$$L_1 = kN_1^2$$
 $L_2 = kN_2^2$ $M = \sqrt{L_1L_2} = kN_1N_2$,

avec *k* une constante positive.

on a alors:

Définition (Transformateur idéal)

Dans un transformateur idéal, les résistances internes des bobines sont nulles et les inductances vérifient :

$$L_1 = kN_1^2$$
 $L_2 = kN_2^2$ $M = \sqrt{L_1L_2} = kN_1N_2$,

avec k une constante positive.

on a alors:

$$\underline{U_1} = jkN_1^2\omega \underline{I_1} + jkN_1N_2\omega \underline{I_2}$$

$$\underline{U_2} = jkN_2^2\omega \underline{I_2} + jkN_1N_2\omega \underline{I_1}$$

Définition (Transformateur idéal)

Dans un transformateur idéal, les résistances internes des bobines sont nulles et les inductances vérifient :

$$L_1 = kN_1^2$$
 $L_2 = kN_2^2$ $M = \sqrt{L_1L_2} = kN_1N_2$,

avec k une constante positive.

on a alors:

$$\underline{U_1} = jkN_1^2\omega \underline{I_1} + jkN_1N_2\omega \underline{I_2}$$

$$\underline{U_2} = jkN_2^2\omega \underline{I_2} + jkN_1N_2\omega \underline{I_1}$$

et donc :

$$\frac{U_2}{U_1} = \frac{N_2}{N_1}$$

Utilisations

le rapport N_2/N_1 permet de faire varier l'amplitude d'une tension sinusoïdale sans changer sa fréquence

Utilisations

➤ abaisser ou relever la tension entre 20 kV dans les alternateurs, 400 kV dans les lignes à haute tension, 220 V dans le réseau domestique,

 \simeq 10 V dans les appareils domestiques

Utilisations

 isoler électriquement le primaire du secondaire dans un transformateur d'isolement

Indispensable

- ▶ autoinduction, lien avec l'électrocinétique
- inductance mutuelle, circuits couplés
- application au transformateur