Loi du moment cinétique

Définition

Définition: Produit vectoriel

Dans une base orthonormée directe (orientation par la règle de la main droite ou gauche), on définit le produit vectoriel $\vec{a} \wedge \vec{b}$:

- antisymétrique : \forall vecteurs \vec{a} , \vec{b} : $\vec{a} \land \vec{b} = -\vec{b} \land \vec{a}$
- bilinéaire : \forall vecteurs \vec{a} , \vec{b}_1 , \vec{b}_2 et $(\lambda, \mu) \in \mathbb{C}^2$: $\vec{a} \wedge (\lambda \vec{b}_1 + \mu \vec{b}_2) = \lambda \vec{a} \wedge \vec{b}_1 + \mu \vec{a} \wedge \vec{b}_2$

Expression

on a aussi:

$$\vec{a} \wedge \vec{b} = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & \wedge b_3 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{vmatrix}$$
(1)

En particulier:

$$\overrightarrow{e}_1 \wedge \overrightarrow{e}_2 = \overrightarrow{e}_3 \quad \overrightarrow{e}_2 \wedge \overrightarrow{e}_3 = \overrightarrow{e}_1 \quad \overrightarrow{e}_3 \wedge \overrightarrow{e}_1 = \overrightarrow{e}_2.$$

Interprétations géométriques

Les normes de vecteurs construits avec des produits vectoriels ont des interprétations géométriques :

- $\left| \overrightarrow{a} \wedge \overrightarrow{b} \right| = ab \left| \sin(\overrightarrow{a}, \overrightarrow{b}) \right|$ est l'aire du parallélogramme construit sur \overrightarrow{a} et \overrightarrow{b} .
- On définit le *produit mixte* de trois vecteurs, noté $(\vec{a}, \vec{b}, \vec{c})$ comme le scalaire $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \wedge \vec{b}) \cdot \vec{c}$. Sa valeur absolue $|(\vec{a}, \vec{b}, \vec{c})|$ est le volume du parallélépipède construit sur $(\vec{a}, \vec{b}, \vec{c})$
- il est stable par *permutation circulaire* :

$$\left(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right) = \left(\overrightarrow{a}\wedge\overrightarrow{b}\right)\cdot\overrightarrow{c} = \left(\overrightarrow{c}\wedge\overrightarrow{a}\right)\cdot\overrightarrow{b} = \left(\overrightarrow{b}\wedge\overrightarrow{c}\right)\cdot\overrightarrow{a}$$

Moment cinétique par rapport à un point

Définition : Moment cinétique par rapport à un point

Soit un point matériel de masse m de position M dans un référentiel \mathcal{R} , animé d'une quantité de mouvement $\overrightarrow{p}_{\mathcal{R}} = m\overrightarrow{v_{\mathcal{R}}}(M)$ par rapport à \mathcal{R} et O un point de \mathcal{R} . On nomme moment cinétique par rapport à O dans \mathcal{R} , noté $\overrightarrow{\sigma_{\mathcal{R}/O}}(M)$ le vecteur :

$$\overrightarrow{\sigma_{\mathcal{R}/O}}(M) = \overrightarrow{OM} \wedge \overrightarrow{p}_{\mathcal{R}} = m\overrightarrow{OM} \wedge \overrightarrow{v}_{\mathcal{R}}.$$

Cas d'un mouvement plan

Dans le cas d'un mouvement dans un plan \mathcal{P} orthogonal à \overrightarrow{e} dans lequel les angles sont orientés par \overrightarrow{e} , on a :

$$\overrightarrow{\sigma_{/O}}(M) = mr^2 \dot{\theta} \overrightarrow{e}.$$

D'un point matériel par rapport à un axe orienté

Définition : Moment cinétique par rapport à un axe orienté

Soit un point matériel de masse m de position M dans un référentiel \mathcal{R} , Δ un axe orienté par \overrightarrow{e} unitaire et O un point quelconque de Δ . On nomme *moment cinétique par rapport à l'axe* Δ le scalaire $\sigma_{/\Delta}(M) = \overrightarrow{\sigma_{/O}}(M) \cdot \overrightarrow{e}$.

Indépendance du point choisi

Le moment cinétique par rapport à l'axe Δ est *indépendant du point* O le long de l'axe Δ choisi pour sa définition.

Cas d'un mouvement plan

Coordonnées cylindriques

On peut écrire :

$$\sigma_{/\Delta}(M) = mr^2\dot{\theta}.$$

Purement géométrique: paramètre d'impact

La valeur absolue de $\sigma_{/\Lambda}(M)$ peut s'écrire :

$$|\sigma_{/\Delta}(M)| = mvb,$$

avec v le module de la vitesse et b le paramètre d'impact, c'est-à-dire la distance à laquelle M passerait de l'axe Δ , si sa trajectoire était rectiligne dirigée par le vecteur $\overrightarrow{v}(M)$.

Moment cinétique d'un système

Définition : Moment cinétique d'un système

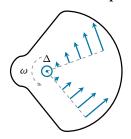
On définit le moment cinétique par rapport à un point d'un système de points matériels comme la somme des moments cinétiques de chacun des points matériels qui le constituent.

$$\overrightarrow{\sigma_{\mathcal{R}/O}}(\mathcal{S}) = \sum_{i=1}^{N} \overrightarrow{\sigma_{\mathcal{R}/O}}(M_i) = \sum_{i=1}^{N} \overrightarrow{OM_i} \wedge \overrightarrow{p_{\mathcal{R}}}(M_i).$$

Déterminer le moment cinétique par rapport à un axe orienté Δ d'un ensemble de trois points matériels M_1 , M_2 :

- M_1 décrivant un mouvement circulaire uniforme de rayon R_1 à la vitesse v_1 dans le sens direct autour de Δ dans un plan orthogonal à $\dot{\Delta}$ noté \mathcal{P} ,
- M_2 décrivant un mouvement circulaire uniforme de rayon R_2 à la vitesse v_2 dans le sens indirect autour de Δ dans le même plan \mathcal{P}_{\star}
- M_3 décrivant un mouvement rectiligne uniforme de vitesse v_3 dans le même plan \mathcal{P} , la distance entre la droite de sa trajectoire et Δ étant R_3 .

Moment d'inertie d'un solide par rapport à un axe fixe

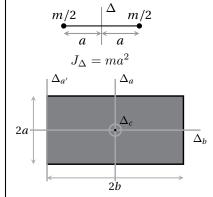


Définition: Moment d'inertie d'un solide par rapport à un axe fixe

Soit un solide S en rotation dans un référentiel \mathcal{R} à la vitesse angulaire $\overrightarrow{\omega_{\mathcal{R}}}$ $\omega_{\mathcal{R}} \vec{e}$ autour d'un axe Δ fixe dans \mathcal{R} , orienté par un vecteur unitaire \vec{e} . Le moment cinétique par rapport à l'axe Δ est proportionnel à $\omega_{\mathcal{R}}$ et on nomme moment d'inertie par rapport à l'axe Δ , notée J_{Δ} , la constante telle que :

$$\sigma_{\mathcal{R}/\Delta}(\mathcal{S}) = J_{\Delta}\omega_{\mathcal{R}}.$$

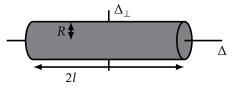
Exemples de moments d'inertie



parallélépipède rectangle $2a \times 2b \times 2c$, uniforme

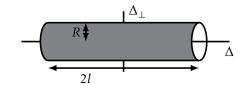
$$a \xrightarrow{m}$$

- $J_{\Delta} = ma^2/2$ $\bullet \quad J_{\Delta_a} = m(b^2 + c^2)/3$ $J_{\Delta} = ma^2$
 - J_{Δ} , = $m(4b^2 + c^2)/3$
 - $J_{\Delta_b} = m(a^2 + c^2)/3$
 - $J_{\Delta_c} = m(a^2 + b^2)/3$
- \bullet $J_{\Delta_{\pi}}$ maximal quand les masses s'éloignent le plus de Δ_r
- J_{Δ_x} ne fait pas intervenir la dimension selon



cylindre plein uniforme

$$J_{\Delta} = \frac{1}{2}mR^2$$
 $J_{\perp} = \frac{mR^2}{4} + \frac{ml^2}{3}$ $J_{\Delta} = mR^2$ $J_{\perp} = \frac{1}{2}mR^2 + \frac{ml^2}{3}$



cylindre creux uniforme

$$J_{\Delta} = mR^2$$
 $J_{\perp} = \frac{1}{2}mR^2 + \frac{ml^2}{3}$

Définition

Définition : Moment d'une force par rapport à un point

Soit un point matériel de position M, soumis à une force \vec{F} et O un point quelconque. On nomme moment par rapport à O de la force \vec{F} le vecteur $\overrightarrow{\mathcal{M}}_{/O}(\vec{F}) =$ $\overrightarrow{OM} \wedge \overrightarrow{F}$.

Définition

Définition : Moment d'une force par rapport à un axe orienté Soient:

- Δ un axe orienté par un vecteur \vec{e} ,
- un point matériel de position M, soumis à une force \vec{F} ,
- et O un point quelconque de Δ .

On nomme moment de la force \vec{F} par rapport à Δ le scalaire $\mathcal{M}_{/\Delta}(\vec{F}) =$ $\overrightarrow{\mathcal{M}_{/O}}(\overrightarrow{F}) \cdot \overrightarrow{e}$

Indépendance du point de calcul

Le moment de la force \vec{F} par rapport à l'axe Δ est indépendant du point O le long de l'axe Δ choisi pour sa définition.

Bras de levier

Définition : Bras de levier

Soit \vec{F} une force et Δ un axe orienté. On définit \vec{F}_{\perp} la composante de \vec{F} orthogonale à Δ .

On nomme bras de levierpar rapport à un axe Δ d'une force \vec{F} exercée sur un point matériel de position \hat{M} la distance d=HH' entre

- l'axe Δ ,
- et la droite $D = (M, \overrightarrow{F}_{\perp})$

On a alors:

$$\mathcal{M}_{/\Delta}(\overrightarrow{F}) = egin{cases} +F_{\perp}d & ext{si } \overrightarrow{F} ext{ tend à faire tourner le PM autour de Δ dans le sens positif défini par } \overrightarrow{e} \ -F_{\perp}d & ext{si } \overrightarrow{F} ext{ tend à faire tourner le PM autour de Δ dans le sens négatif} \end{cases}.$$

Exercice

- 1. On place une masse m sur une brouette, à la distance d de l'axe des roues. On cherche à soulever la brouette en exerçant une force F sur l'extrémité des poignées situées à la distance D de ce même axe. Comparer les moments du poids de la masse m et de la force F et commenter.
- 2. Justifier la position des poignées de porte, sur le côté opposé à l'axe de rotation.

Moment résultant des forces

Définition : Moment résultant d'un systèmes de forces

Le moment résultant d'un système de N forces $\left\{\overrightarrow{F_i}\right\}_{i=1..N}$ appliquées en différents points $\left\{P_i\right\}_{i=1..N}$ d'un objet est la somme des moments des différentes forces. On notera $\overline{\mathcal{M}_{/O}}$ un moment par rapport à un point :

$$\overrightarrow{\mathcal{M}_{/O}} = \sum_{i=1}^{N} \overrightarrow{\mathcal{M}_{/O}}(\overrightarrow{F_i}) = \sum_{i=1}^{N} \overrightarrow{OP_i} \wedge \overrightarrow{F_i}.$$

On notera $\mathcal{M}_{/\Delta}$ un moment par rapport à un axe orienté Δ de vecteur unitaire directeur \overrightarrow{e} :

$$\mathcal{M}_{/\Delta} = \sum_{i=1}^{N} \mathcal{M}_{/\Delta}(\overrightarrow{F_i}) = \overrightarrow{e} \cdot \left(\sum_{i=1}^{N} \overrightarrow{O_{\Delta}P_i} \wedge \overrightarrow{F_i}\right),$$

avec O un point quelconque de l'axe Δ .

Couple

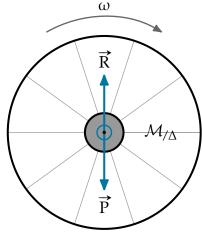
Définition : Couple d'un système de forces

On nomme *couple* un système de forces dont la force résultante est nulle mais dont le moment résultant en un point O quelconque, noté \overrightarrow{C} , est non nul.

Indépendance du point de calcul

Le moment d'un couple est indépendant du point par rapport auquel on le calcule.

Actions sur un solide

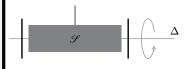


Roue avant d'un vélo retourné sur sa selle

Liaison pivot

Définition : Liaison pivot

Une liaison pivot est un dispositif mécanique *permettant la rotation* d'un objet autour d'un axe fixe tout en *empêchant la translation* selon ce même axe.



Par rapport à un point

Théorème : du moment cinétique par rapport à un point de vitesse nulle Soit un point matériel de masse m de position M dans un référentiel \mathcal{R}_g galiléen et O un point de vitesse nulle de \mathcal{R}_g .

La dérivée par rapport au temps dans \mathcal{R}_{g} du moment cinétique en O du point matériel est égale au moment en O de la résultante \overrightarrow{F} des forces qui lui sont appliquées :

$$\left(\frac{\operatorname{d}\overrightarrow{\sigma_{/O}}(M)}{\operatorname{d}t}\right)_{\mathcal{R}_g} = \overrightarrow{\mathcal{M}_{/O}}(\overrightarrow{F})$$

Par rapport à un axe fixe

Théorème : du moment cinétique (axe de vitesse nulle)

Soit un point matériel de masse m de position M dans un référentiel $\mathcal{R}_{\mathbf{g}}$ galiléen et Δ un axe de vitesse nulle de $\mathcal{R}_{\mathbf{g}}$.

La dérivée par rapport au temps dans \mathcal{R}_g du moment cinétique par rapport à Δ du point matériel est égale au moment en Δ de la résultante \vec{F} des forces qui lui sont appliquées :

$$\left(\frac{\mathrm{d}\sigma_{/\Delta}(M)}{\mathrm{d}t}\right)_{\mathcal{R}_g} = \mathcal{M}_{/\Delta}(\overrightarrow{F}).$$

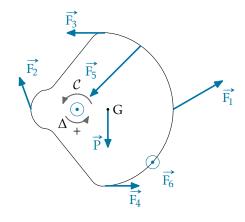
Actions intérieures et extérieures

Loi du moment cinétique par rapport à un point fixe

Soit $\mathcal S$ un système non ponctuel ferm'e et O un point fixe d'un référentiel $\mathcal R_g$ galil'een.

La dérivée par rapport au temps dans \mathcal{R}_g du moment cinétique par rapport à O dans \mathcal{R}_g du système est égale au moment résultant par rapport à O des seules forces *extérieures* qui lui sont appliquées :

$$\left(\frac{\mathrm{d}\overrightarrow{\sigma_{\mathcal{R}_g/O}}(\mathcal{S})}{\mathrm{d}t}\right)_{\!\!\mathcal{R}_g} = \overrightarrow{\mathcal{M}_{\mathrm{ext/O}}}.$$



- 1. Déterminer graphiquement les bras de leviers par rapport à l'axe Δ des différentes forces appliquées sur le solide en rotation ci-contre.
- 2. En déduire l'expression du moment résultant qui lui est appliqué.
- 3. Que peut-on dire de l'action des forces $\overrightarrow{F_3}$ et $\overrightarrow{F_4}$.

Solide en rotation autour d'un axe fixe

Théorème : du moment cinétique pour un solide en rotation autour d'un axe fxe Soit S un solide en rotation autour d'un axe orienté Δ fixe dans un référentiel \mathcal{R}_g galiléen, J_{Δ} le moment d'inertie de S par rapport à l'axe Δ et $\omega_{\mathcal{R}_g}$ la vitesse de rotation autour de Δ dans \mathcal{R}_g .

Le produit de J_{Δ} et de la dérivée temporelle de $\omega_{\mathcal{R}_g}$ est égal au moment résultant par rapport à l'axe Δ des seules forces *extérieures* :

$$J_{\Delta}\left(rac{\mathrm{d}\omega_{\mathcal{R}_g}}{\mathrm{d}t}
ight)_{\!\!\mathcal{R}_g}=\mathcal{M}_{\mathrm{ext}/\Delta}.$$

Modèle

Loi du moment cinétique

Définition : Pendule pesant

Un pendule pesant est un solide en rotation sous l'effet de son poids autour d'un axe fixe.

Actions exercées

Moment du poids

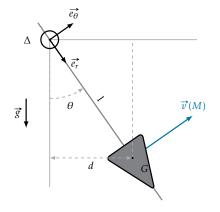
L'action de la pesanteur sur un système $\mathcal S$ de masse m peut être décrite comme une force $\overrightarrow{P}=m\overrightarrow{g}$ appliquée au centre d'inertie G du système, c'est-à-dire telle que son moment résultant par rapport à un point O quelconque est $\overrightarrow{\mathcal M}_{/O}(\overrightarrow{P})=\overrightarrow{OG}\wedge\overrightarrow{P}$.

Travail et énergie potentielle du poids d'un solide

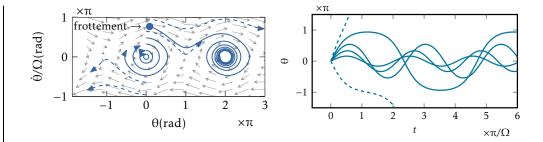
Le travail élémentaire des forces de pesanteur exercées sur un solide de masse m, dont l'altitude z du centre d'inertie varie de dz, est $\delta W = -mg\,\mathrm{d}z$. On peut donc leur associer l'énergie potentielle de pesanteur :

$$\mathcal{E}_{pot} = mgz + cste.$$

Équation différentielle d'évolution



Synthèse



Équilibre d'un solide en rotation

Équilibre d'un solide en rotation

Les positions *d'équilibre* d'un solide $\mathcal S$ en rotation autour d'un axe fixe Δ sont celles où le *moment résultant* en Δ des forces extérieures qui lui sont appliquées est *nul*.

Dans le cas d'un pendule pesant sans frottement, le *centre d'inertie* G est à *l'aplomb de l'axe* Δ quand $\mathcal S$ est à l'équilibre. La position d'équilibre est stable si G est « au-dessous » de l'axe Δ .

Dispositif

Fil de torsion idéal

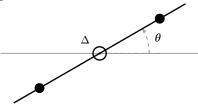
On considère un fil de torsion tendu d'extrémités O et A, le vecteur unitaire \overrightarrow{e} dirigé de O vers A et on fixe un solide S en O.

Quand le solide $\mathcal S$ a tourné d'un angle θ autour de l'axe $\Delta=(OA)$ orienté par \overrightarrow{e} par rapport au fil non tordu, le fil exerce sur $\mathcal S$ un couple de rappel $\mathcal C_\Delta$.

Le fil est dit idéal s'il existe une constante positive K, dite de torsion, telle que :

$$C_{\Delta} = -K\theta$$
,

Équation différentielle d'évolution



Équation canonique harmonique

$$J_{\Delta}\ddot{\theta} + K\theta = 0.$$

mouvement harmonique, de pulsation $\Omega = \sqrt{K/J}$.

Force centrale

Définition : Définition

La force \overrightarrow{F} à laquelle est soumis un point matériel situé au point M d'un référentiel \mathcal{R} est dite *centrale* s'il existe un point O fixe de \mathcal{R} tel que \overrightarrow{F} reste toujours colinéaire à \overrightarrow{OM} au cours du mouvement de M.

Conservation du moment cinétique et planéité

Théorème : Conservation du moment cinétique et planéité

Soit un point matériel soumis à une force centrale de centre O fixe dans un référentiel galiléen \mathcal{R}_g .

- Le moment cinétique en O, $\overrightarrow{\sigma_{/O}}(M) = \sigma_O \overrightarrow{e_z}$, est conservé.
- La trajectoire est *inscrite dans le plan orthogonal à* $\overrightarrow{\sigma_{/O}}(M)$ passant par O, ie le plan défini par la position et la vitesse initiales. On a donc :

$$\overrightarrow{\sigma_{IO}}(M) = m \overrightarrow{r}_0 \wedge \overrightarrow{v}_0 = mr^2 \dot{\theta} \overrightarrow{e_z}.$$

Constante des aires

Définition : Vitesse aréolaire

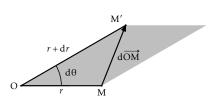
Soit un point M animé d'un mouvement plan repéré en coordonnées polaires $(r\,,\theta)$ de centre O. On définit la vitesse aréolaire v_A comme la dérivée par rapport au temps de l'aire A balayée par le rayon vecteur \overrightarrow{OM} , $v_A = \frac{\mathrm{d}A}{\mathrm{d}t}$.

Théorème : Constante des aires

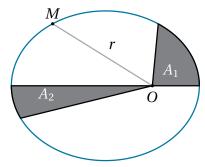
On a $v_A=\frac{1}{2}r^2\dot{\theta}=\sigma_O/(2m)$. Dans un mouvement à force centrale la vitesse aréolaire est donc une constante, nommée *constante des aires* :

- l'aire balayée pendant une durée Δt par le rayon vecteur \overrightarrow{OM} est proportionnelle à Δt ,
- ullet en particulier, le mouvement de M autour de O s'effectue toujours dans le même sens.

Illustration



 $\mathrm{d}A$ est la moitié de l'aire du los ange



Les aires A_1 et A_2 balayées pendant un même intervalle de temps sont égales.

Énergie cinétique

\mathcal{E}_c d'un solide en rotation autour d'un axe fixe

Soit un solide $\mathcal S$ en rotation à la vitesse angulaire $\omega_{\mathcal R}$ par rapport à un axe Δ fixe dans un référentiel $\mathcal R$ et J_Δ le moment d'inertie de $\mathcal S$ par rapport à l'axe Δ . L'énergie cinétique $\mathcal E_{c_{\mathcal R}}$ de $\mathcal S$ dans $\mathcal R$ est :

$$\mathcal{E}_{c_{\mathcal{R}}} = \frac{1}{2} J_{\Delta} \omega_{\Delta}^2.$$

Théorème : de l'énergie de l' \mathcal{E}_c pour un solide en rotation autour d'un axe fixe La dérivée temporelle de l'énergie cinétique $\mathcal{E}_{c\mathcal{R}_g}(\mathcal{S})$ d'un solide en rotation à la vitesse angulaire $\omega_{\mathcal{R}_g}$ autour d'un axe orienté Δ fixe dans un référentiel galiléen \mathcal{R}_g est égale à la seule puissance des actions extérieures. En notant $\mathcal{M}_{\text{ext}/\Delta}$ leur moment résultant par rapport à l'axe Δ , on a :

$$\left(rac{\mathrm{d}\mathcal{E}_{\mathrm{c}\mathcal{R}_g}(\mathcal{S})}{\mathrm{d}t}
ight)_{\!\!\mathcal{R}_g} = \mathcal{M}_{\mathrm{ext}/\Delta}\omega_{\mathcal{R}_g}.$$

De même, la variation d'énergie cinétique du solide entre deux instants t_1 et t_2 est égale au seul travail des *actions extérieures* :

$$\Delta \mathcal{E}_{\mathsf{c}\mathcal{R}_g}(\mathcal{S}) = \int\limits_{t_1}^{t_2} \mathcal{M}_{\mathsf{ext}/\Delta} \omega_{\mathcal{R}_g} \, \mathsf{d}t.$$

Puissance et travail des actions

Puissance et travail d'un moment sur un solide en rotation

Soit un solide $\mathcal S$ en rotation autour d'un axe Δ orienté fixe dans un référentiel $\mathcal R$ à la vitesse angulaire $\omega_{\mathcal R}$ soumis à un moment $\mathcal M_{/\Delta}$ par rapport à l'axe Δ .

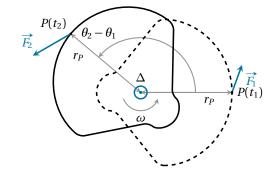
La puissance du moment $\mathcal{M}_{/\Delta}$ est :

$$\mathcal{P}_{\mathcal{R}}(\mathcal{M}_{/\Delta}) = \mathcal{M}_{/\Delta}\omega_{\mathcal{R}}.$$

Son travail, quand le solide effectue une rotation de l'angle θ_1 à l'angle θ_2 entre deux instants t_1 et t_2 est :

$$W_{\mathcal{R}}_{\theta_1 \xrightarrow{c} \theta_2} (\mathcal{M}_{/\Delta}) = \int_{t_1}^{t_2} \mathcal{M}_{/\Delta} \omega_{\mathcal{R}} \, \mathrm{d}t.$$

Illustration



Moment conservatif

Moment conservatif

Un moment \mathcal{M}_{Δ} par rapport à un axe Δ orienté subi par un solide en rotation autour d'un axe fixe Δ est conservatif si et seulement si \mathcal{M}_{Δ} ne dépend que de l'angle θ autour de l'axe Δ dans un référentiel \mathcal{R} et est en particulier indépendant du temps et de la vitesse de rotation $\omega_{\mathcal{R}}$ autour de l'axe Δ .

Énergie potentielle d'un pendule de torsion

Le couple d'un pendule de torsion est conservatif, d'énergie potentielle associée :

$$\mathcal{E}_{\text{pot}} = \frac{1}{2} K \theta^2,$$

avec K la constante de torsion et θ l'angle de torsion par rapport au repos.

Énergie mécanique

Énergie mécanique d'un solide en rotation autour d'un axe fixe

On définit l'énergie mécanique $\mathcal{E}_{m\mathcal{R}}$ d'un solide en rotation, dans un référentiel \mathcal{R} , autour d'un axe Δ fixe :

$$\mathcal{E}_{m\mathcal{R}} = \mathcal{E}_{c\mathcal{R}} + \mathcal{E}_{pot}(\theta) = \frac{1}{2} J_{\Delta} \omega^2 + \mathcal{E}_{pot}(\theta).$$

Théorème

Théorème : de l' \mathcal{E}_m pour un solide en rotation autour d'un axe fixe

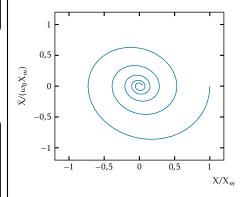
Dans un référentiel galiléen \mathcal{R}_g , la variation de l'énergie mécanique d'un solide en rotation autour d'un axe fixe est égale au *seul travail des forces extérieures* non conservatives.

En notant $\mathcal{P}_{ext,nc}$ leur puissance, on a à chaque instant :

$$\left(\frac{d\mathcal{E}_{m\mathcal{R}_{\mathit{g}}}}{d\mathit{t}}\right)_{\!\!\mathcal{R}_{\mathit{g}}} = \mathcal{P}_{\mathsf{ext},\mathsf{nc}}.$$

Intégrale première du mouvement

$$\mathcal{E}_{\mathrm{m}} = \mathcal{E}_{\mathrm{c}} + \mathcal{E}_{\mathrm{pot}} = \mathrm{cste} = \frac{1}{2} J_{\Delta} \omega^2 + \frac{1}{2} K \theta^2.$$



Indispensable

Indispensable

- définition des moments (cinétique et d'une force), bras de levier, paramètre d'impact
- expression du moment cinétique par rapport à un axe à l'aide du moment d'inertie pour un solide
- propriétés générales du moment d'inertie
- théorèmes du moment cinétique pour un point matériel, loi pour un solide
- théorèmes de l'énergie cinétique/mécanique pour un solide
- intégrales premières du pendule pesant et du pendule de torsion

Pendule de torsion