Interactions

Définition: Absorption

L'*absorption* correspond au transfert d'une partie de l'énergie lumineuse vers le milieu dans lequel la lumière se propage.

Définition : Diffusion

La *diffusion* correspond à la redirection, par le milieu, d'une partie de l'énergie d'un rayon lumineux hors de sa direction principale.

Milieu d'étude

Définition : Milieu transparent, homogène et isotrope

Un milieu est dit *transparent* si *l'intensité lumineuse*, *ie* l'énergie transportée par la lumière, est *constante au cours de la propagation*.

Il est dit *homogène* si ses propriétés optiques y sont *uniformes*, *ie* ne dépendent pas de la position dans le milieu.

Il est dit *isotrope* si ses propriétés optiques ne dépendent pas de la direction de propagation de la lumière.

Modèle du rayon lumineux

On établit le *modèle* du rayon lumineux, sans dimensions, vérifiant trois propriétés fondamentales :

Propagation rectiligne La lumière se propage *en ligne droite* dans un *transparent et homogène*.

Retour inverse Dans un milieu *transparent et isotrope*, le trajet de la lumière est *indépendant du sens de parcours*. Si un certain chemin reliant un point A à un point B peut être parcouru par un rayon, un rayon pourra suivre le même chemin pour aller de B à A.

Indépendance des rayons lumineux Le chemin suivi par un rayon lumineux *ne dépend pas du chemin d'autres rayons lumineux*.

Nature ondulatoire de la lumière

Modèle: nature ondulatoire de la lumière

On peut décrire la lumière comme une onde électromagnétique associée à la propagation d'un champ électrique (noté \vec{E}) et d'un champ magnétique (noté \vec{B}).

Sa vitesse de propagation vaut, pour une propagation dans le vide, $c = 299792458\,\mathrm{m\cdot s^{-1}}$ par définition.

Fréquence et longueur d'onde

domaine	γm)	X (m)	UV (nm)	Visible (nm)		IR (nm)	μ-onde/radio(m)	
λ	$\leqslant 1\cdot 10^{-12}$	$1\cdot 10^{-12} \rightarrow 1e-8$	≤ 400	500	590	630	≥ 750	≥ 1e – 3
				bleu	jaune	rouge		

Dimension transversale non nulle : diffraction

Modèle du rayon lumineux

Diffraction

Le modèle du rayon lumineux n'est pertinent que quand sa plus petite dimension transversale $a \gg \lambda$.

Non indépendance des rayons : interférences

Interférences

Les faisceaux formés par *division d'un même faisceau* ne sont pas indépendants : le modèle des rayons indépendants n'est pas valable en présence d'*interférences*.

Quantification de l'énergie : le photon

Quantification de l'énergie

L'énergie d'un rayonnement lumineux ne peut pas prendre toutes les valeurs réelles : elle varie par *sauts discrets*, nommés *quanta*. On peut décrire un rayonnement monochromatique de fréquence v comme formé de *particules* nommées *photons*, d'énergie E = hv, avec h la *constante de Planck* $h = 6,626\,068\,96(33)\cdot 10^{-34}\,\mathrm{J}\cdot \mathrm{s}$.

Retour inverse non vérifié : effet Faraday

Effet Faraday

En présence d'un *champ magnétique extérieur*, on peut créer des dispositifs dans lesquels la lumière emprunte des chemins différents suivant son sens de parcours.

Dioptre et miroir

Définition : Dioptre et miroir

On nomme *dioptre* l'interface entre deux milieux optiques aux propriétés optiques différentes.

On nomme *miroir* une surface recouverte d'un mince dépôt métallique réfléchissant.

Coplanarité

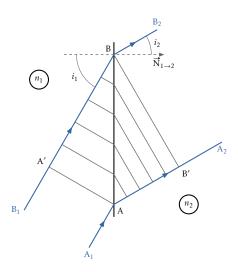
1^{re}loi: Coplanarité

Les rayons I, R et T sont *coplanaires* dans le plan d'incidence \mathcal{P}_{I} .

Réflexion

2^eloi: Réflexion

La trajectoire du rayon réfléchi est *symétrique* de celle du rayon incident par rapport au vecteur normal $\vec{N}_{1\rightarrow 2}$ au dioptre au point d'incidence.


Réfraction

3^eloi: Réfraction et indice

Un milieu optique transparent homogène et isotrope est caractérisé par un *indice de réfraction n*. Lors de la traversée d'un dioptre séparant un milieu 1 d'indice n_1 d'un milieu 2 d'indice n_2 , les angles *orientés* d'incidence i (rayon I) et de réfraction t (rayon T) vérifient :

 $n_1 \sin i = n_2 \sin t.$

Retour sur les ondes (HP)

Indice du vide et indice absolu

Définition : Indice absolu

On *définit* l'indice *absolu* d'un milieu par :

- n = 1 pour le vide,
- $n_X = \frac{\sin i}{\sin t}$ lors de la réfraction du vide vers un milieu X.

Propriétés

	Bleu $\lambda_0 = 486,1 \text{nm}$	Vert $\lambda_0 = 589,0 \mathrm{nm}$	Rouge $\lambda_0 = 656.3 \text{nm}$			
Verre Crown	1,523	1,517	1,514			
Verre Flint	1,585	1,575	1,571			
Diamant	2,435	2,417	2,410			
Eau	1,338	1,333	1,331			
Air (20°C 1 bar)	1,000293					

Dispersion

Définition: Dispersion

Un milieu optique est dit *dispersif* si son indice de réfraction *varie avec la lon-gueur d'onde*.

Loi de Cauchy

La *loi de Cauchy* (1836) donne, pour le visible, les variations de l'indice d'un milieu transparent avec la longueur d'onde dans le vide notée λ_0 :

$$n = n_0 + \frac{A}{\lambda_0^2} \quad A > 0.$$

En optique physique

Indice et vitesse de la lumière

La vitesse, notée v_n , de la lumière dans un milieu d'indice n est différente de sa vitesse dans le vide c. L'indice absolu n d'un milieu représente le quotient $n = \frac{c}{v_n}$.

Déviation

Déviation à la réfraction

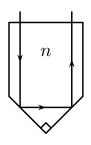
Lors de la réfraction d'un milieu 1 vers un milieu 2 plus (resp. moins) réfringent, le rayon réfracté se rapproche (resp. s'éloigne) de la normale au dioptre.

Réflexion totale

Définition: Réflexion totale

Lors de la réfraction vers un milieu *moins réfringent*, il n'y a pas de rayon réfracté si l'angle d'incidence est *supérieur* à l'*angle de réfraction limite* i_{ℓ} tel que :

$$\sin i_{\ell} = \frac{n_2}{n_1}$$

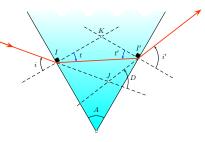

On dit qu'il y a réflexion totale.

Exercice : prisme à réflexion totale

Définition : Prisme optique

Un prisme optique est un milieu réfringent transparent, homogène et isotrope délimité par deux dioptres formant un dièdre.

- 1. On considère le prisme de la figure ci-contre, d'indice n, dont la pointe forme un angle de 90° .
 - Le prisme est plongé dans l'air d'indice $n_0 \simeq 1,000$. On constate qu'un rayon lumineux arrivant sous incidence normale ressort du prisme parallèlement à lui-même après avoir subi deux réflexions totales sur les faces de la pointe. En déduire que l'indice du prisme doit être supérieur à une valeur n_{min} .

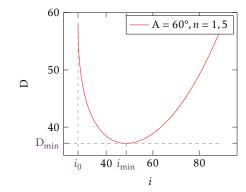


- 2. La pointe du prisme est maintenant plongée dans de l'eau, d'indice $n_1 = 1,33$.
 - (a) La direction du rayon émergent du prisme par la face supérieure est-elle modifiée ?
 - (b) On constate qu'il n'y a maintenant plus réflexion totale : on observe des rayons émergents dans l'eau. En déduire que l'indice du prisme est inférieur à une autre valeur $n_{\rm max}$.
 - (c) Déterminer la direction des rayons émergents dans l'eau pour n = 1,52. Réaliser un schéma des différentes réflexions et réfractions.
 - (d) Quelle caractéristique du rayon émergent par la face supérieure est-elle modifiée quand le prisme est plongé dans l'eau ? Proposer une utilisation de ce dispositif comme détecteur de niveau d'eau.

Propriété fondamentale

Déviation vers la base

Un prisme plongé dans un milieu moins réfringent que le matériau dont il est constitué dévie les rayons lumineux *vers sa base*.



Minimum de déviation

La déviation D passe pour un minimum en fonction de i (animation du prisme)

Minimum de déviation

Au minimum de déviation d'un prisme, on a $i = i' = i_m$ et $t = t' = t_m$.

Illustration qualitative : mirages

Loi de Gladstone

Soit un fluide de masse volumique ρ et d'indice de réfraction n. Le quotient :

$$\frac{n-1}{\rho}$$
,

est constant lors des variations de masse volumique.

Modélisation

Équation différentielle de la trajectoire

$$\frac{\mathrm{d}x}{\mathrm{d}z} = \frac{n_0 \sin i_0}{\sqrt{n^2(z) - n_0^2 \sin^2(i_0)}}$$

Indispensable

- les 3 lois de Snell-Descartes avec les schémas
- réfringence et éloignement/rapprochement de la normale
- réflexion totale
- calculs : formules du prisme et indice variable pas au programme, à s'entraîner
- interprétation ondulatoire pas au programme

29 septembre 2017