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Abstract

In this work, we study the Quantum Optimal Transport problem with the goal of
finding new more efficient algorithms than the current existing ones in the literature.
Our key idea is to find Quantum equivalents of existing linear programming algo-
rithms solving the classical optimal transport problem such as Sinkhorn Algorithm,
Hungarian Algorithm, etc.

1 Introduction and context

1.1 Classical Optimal Transport Problem

Let us first formulate the Classical OT Problem. Suppose you have m > 0 factories
producing and amount G for goods which has to be distributed to n consumers. Assume
that xAB

i,j is the proportions of goods shipped from factory i to consumer j and xAi and xBj
respectively the amount of good produced by factory i and the amount of good received
by consumer j. We then have:

∀(i, j) ∈ [n]× [m], xAi =
n∑

j=1

xAB
i,j and xBj =

m∑
i=1

xAB
i,j (1)

Where [n] = {1, . . . , n} and [m] = {1, . . . ,m}.
Let Γ(xA, xB) be the set of elements XAB = (xAB

i,j )i,j ∈ Mn,m(R+) satisfying (1), where
xA = (xA1 , . . . , x

A
m)

T and xB = (xB1 , . . . , x
B
n )

T .
Assuming n = m, let C = (ci,j) ∈ Mn(R+) such that for all i, j, ci,j represents the cost
of transporting goods from factory i to factory j and for all i, j, k ∈ [n], ci,j ≤ ci,k + ck,j.
The Classical optimal transport is then formulated as:

TC(x
A, xB) = min

X∈Γ(xA,xB)
Tr(CXT )

There are many Algorithms solving this problem, which are in polynomial time.

1.2 A different perspective on Mn2(C)
In order to make things clearer and coherent with the literature, and before presenting
the quantum optimal transport, we will give another perspective on Mn2(C). Let M be
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a an element of Mn2(C). M can be written as follows:

M =

A1,1 . . . A1,n
... . . . ...

An,1 . . . An,n


where for all i, j ∈ [n], Ai,j is a matrix in Mn(C).
Considering this, we can represent the matrix M with a sequence of 4 indices instead of
2, M = (mi1,i2,j1,j2)i1,i2,j1,j2∈[n] such that for all i1, i2, j1, j2 ∈ [n], mi1,i2,j1,j2 = [Ai1,j1 ]i2,j2.

1.3 Quantum Optimal Transport Problem

Let S+
m(C) be the set of density matrices, i.e. positive semi-definite elements of Mn(C) of

trace equal to 1. Let ρA ∈ S+
m(C) and ρB ∈ S+

n (C). ρA and ρB describe two n dimensional
quantum states. A coupling of ρA and ρB is a matrix ρAB = (ρAB

i,j,k,l)i,k∈[m], j,l∈[n] ∈ S+
nm(C)

such that

TrA(ρ
AB) =

(
m∑
i=1

ρAB
i,p,i,q

)
p,q∈[n]

= ρB and TrB(ρAB) =

(
n∑

p=1

ρAB
i,p,j,p

)
i,j∈[m]

= ρA

Using the classical representation of Mn2(C), the two equalities above can also be written
as

TrA(ρ
AB) =

n∑
i=1

ρi,i and TrB(ρAB) = (Tr(ρp,q))p,q∈[n]

where

ρAB =

ρ1,1 . . . ρ1,n
... . . . ...
ρn,1 . . . ρn,n


We denote ΓQ(ρA, ρB) the set of all couplings of ρA and ρB that we will call the set of
bipartite density matrices and consider C a hermitian matrix of order mn. The quantum
optimal problem, abbreviated as QOT, is then formulated as:

TQ
C (ρA, ρB) = min

ρAB∈ΓQ(ρA,ρB)
Tr(CρAB)

The key difference between this problem and the previous problem is that it is a SDP
problem, which is known to be more difficult. Notice here that since the objective function
could be a complex number, we are minimizing its real part.

2 Extremal points of ΓQ(ρA, ρB)

2.1 Extremal points of rank one

In this part, we assume m = n, xA = xB = (1, . . . , 1)T , and ρA = ρB = I. In this case,
TC(x

A, xB) is the set of bistochastic matrices.
Our first idea was to study the extremal points of the set ΓQ(ρA, ρB). Our intuition was
that since extremal points in the classical case were matrices with many coefficients equal
to 0, the equivalent of this property would be some upper bound on the rank of the matrix.
It is hence natural to ask ourselves the following question: what are the matrices of rank
1 that are extremal in ΓQ(ρA, ρB)? This led us to the following result:
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All matrices of rank one in ΓQ(ρA, ρB)
1. Can be written as M = uuT where u = (xT1 , . . . , x

nT )T such that for all
i ∈ [n], xi ∈ Rn and (x1, . . . , xn) is an orthonormal basis of Rn.

2. Are extremal points of ΓQ(ρA, ρB).

Proposition 2.1.

Proof. In order to prove this, we will use the following result

The extremal directions of the cone C = {ρ ∈ Mn2(C), ρ positive semi definite}
are exactly the matrices that can be written as uuT such that u ∈ Rn2 .

Lemma 2.2.

Let M = uuT be a rank one matrix in ΓQ(ρA, ρB) where u = (xT1 , . . . , x
nT )T .

The matrix M can be written as block matrix M = (xix
T
j )i,j. The condition M ∈

ΓQ(ρA, ρB) is equivalent to

TrA(M) =
n∑

i=1

xix
T
i = I and TrB(M) =

(
Tr(xix

T
j )
)
i,j∈[n] = (xTj xi)i,j∈[n] = I

The second equality gives for all i, j ∈ [n] the following property xTj xi = δi,j, i.e.
(x1, . . . , xn) is an orthonormal basis of Rn. Note that when this property is verified,
TrA(M) =

∑n
i=1 xix

T
i = I is also true. Hence, the first property has been proven.

Using Lemma 2.2, it is easy to see that if M1,M2 ∈ ΓQ(ρA, ρB) and λ ∈ [0, 1], then

M = λM1 + (1− λ)M2 =⇒ λ ∈ {0, 1}

i.e. M is an extremal point of ΓQ(ρA, ρB).

2.2 General case

After proving this result, our first attempt to find the extremal points of ΓQ(ρA, ρB) was
to try to find an equivalent to the extremal points of Γ(xA, xB) in the quantum case. It
turns out that the equivalent of Γ(xA, xB) in ΓQ(ρA, ρB) is the set of diagonal matrices in
ΓQ(ρA, ρB). We see this using the following bijective map:

ψ :

{
Γ(xA, xB) −→ ΓQ(ρA, ρB) ∩ D
M 7−→ diag(L1(M), . . . , Ln(M))

Where D is the set of diagonal matrices of Mn2(C), and diag(L1(M), . . . , Ln(M)) the
diagonal matrix induced by the rows of M = (mi,j)i,j∈[n], i.e.

diag(L1(M), . . . , Ln(M)) =



m1,1

. . . 0
m1,n

. . .
. . .

0 mn,1

. . .
mn,n
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Notice that the constraints in ΓQ(ρA, ρB) are indeed giving the wanted constraints in
Γ(xA, xB):

TrA(ψ(M)) = I ⇐⇒ ∀i ∈ [n]
n∑

k=1

mk,i = 1

In the set of bistochastic matrices, the extremal points are exactly permutation matrices,
i.e. matrices that take the following form: M = (δi,σ(j))i,j∈[n] where σ ∈ Sn. The equivalent
of these matrices in ΓQ(ρA, ρB) can be written as ρ = (δi,kδj,lδσ(i),k)i,j,k,l∈[n]. Those matrices
are basically diagonal matrices with n coefficients equal to 1 and the other coefficients
are equal to 0. Our intuition was that these matrices are extremal points in ΓQ(ρA, ρB)
which unfortunately turned out to be wrong. Here is a counter example. Assume n = 2.
We consider the following matrices:

A =


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 = u1u
T
1 , B =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 = u2u
T
2 and C =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


where u1 =

(
1 0 0 −1

)T and u2 =
(
1 0 0 1

)T . A and B are elements of ΓQ(ρA, ρB),
and C = ψ(I) is the equivalent of the identity matrix in ΓQ(ρA, ρB). If our intuition was
correct, C should be an extremal point of ΓQ(ρA, ρB). However, we can see that

C =
1

2
A+

1

2
B

which means that C is not extremal. According to [4], the extremal points of ΓQ(ρA, ρB)
for n = 2 are maximally entangled pure states, i.e. exactly the rank one matrices we found
when we started studying the problem. Furthermore, [4] cites a correspondence between
completely positive linear CPn,m maps from Mn(C) to Mm(C) and bipartite density
matrices proven in [2] using the isomorphism σ : ϕ 7−→

∑
i,j∈[n]Ei,j ⊗ ϕ(Ei,j) where the

equivalent of the condition on partial traces in the space of completely positive linear
maps becomes ϕ(I) = ρA and ϕ∗(I) = ρB (see definition of ϕ∗ in [4] or in section 3.2.2)
and hence establishes that using this result, finding the extremal points of ΓQ(ρA, ρB) is
equivalent to finding extremal points of

CPm,n(ρ
A, ρB) = {ϕ ∈ CPn,m, ϕ(I) = ρA and ϕ∗(I) = ρB}

Theorem 4 in [4] give a very elegant characterisation of extremal points of CPm,n(ρ
A, ρB)

Let ϕ : Mn(C) −→ Mm(C) be a linear map. ϕ is extremal in the convex set
CPn,m(ρ

A, ρB) if and only if for all A ∈ Mn(C),

ϕ(A) =
r∑

i=1

V ∗
i AVi

where for all i, Vi ∈ Cn×m such that

r∑
i=1

V ∗
i Vi = ρA and

r∑
i=1

ViV
∗
i = ρB

and {V ∗
i Vj ⊕ VjV

∗
i , i, j ∈ [r]} is a linearly independent set.

Theorem 2.3.

However, this theorem cannot be more explicitly written in ΓQ(ρA, ρB).
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3 Sinkhorn Algorithm
After studying the extremal points of ΓQ(ρA, ρB), out second idea was to find an equivalent
to the Sinkhorn Algorithm in the quantum case.

3.1 Classical Sinkhorn Algorithm

Let us formulate the regularized version of the classical optimal transport problem

T λ
C(x

A, xB) = min
x∈Γ(xA,xB)

Tr(CXT )− 1

λ
h(X)

Where
h(X) =

∑
i,j∈[n]

xij log xij

The Lagrangian of this minimization problem can be written as

Lλ(X, (αA
i )j, (α

B
j )j) =

∑
i,j∈[n]

cijxij −
1

λ

∑
i,j∈[n]

xij log xij −
n∑

i=1

αA
i

(
n∑

j=1

xij − xAi

)

−
n∑

j=1

αB
j

(
n∑

i=1

xij − xBi

)
At optimality, we have for all i, j ∈ [n],

∂Lλ

∂xij
= cij −

1

λ
(1 + log xi,j)− αA

i − αB
j = 0

i.e.
xi,j = eλα

A
i e1−λcijeα

B
j

This problem is equivalent to the following: given a matrix M ∈ Mn(R), find diagonal
matrices D1 and D2 such that the matrix X∗ = D1MD2 verifies condition (1) stated in
section 1.1.
A very well known way to solve this problem is the Sinkhorn Algorithm, which is an
iterative method consisting of scaling rows and columns at each iteration. This gives us
a sequence defined by the following:

M0 =M, Mk+1 = D1
k+1Mk if k odd, Mk+1 =MkD

2
k+1 else

Where for all k,

D1
k+1 = diag

(
xA1∑n

j=1 [Mk]1j
, . . . ,

xAn∑n
j=1 [Mk]nj

)

D2
k+1 = diag

(
xB1∑n

i=1 [Mk]i1
, . . . ,

xBn∑n
i=1 [Mk]in

)
When the matrix M has positive coefficients, the Sinkhorn algorithm converges to a
solution of the problem, i.e. the two sequences (D1

2k+1 . . . D
1
1)k and (D2

0 . . . D
2
2k)k converge

respectively to matrices D1 and D2 verifying the wanted property.

3.2 Quantum Sinkhorn Algorithm

Before talking about our work on the quantum Sinkhorn Algorithm, let us mention that
in [5] Peyré and al. gave some quantum version of the Sinkhorn Algorithm. However,
the algorithm does not solve the actual quantum optimal transport problem but rather
another version of it with relaxed constraints.
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3.2.1 Sinkhorn resulting from the dual problem

In this section, we will explain our first try to find a quantum equivalent to Sinkhorn
Algorithm.
The regularized problem related to the quantum optimal transport problem can be written
as

TQ,λ
C (ρA, ρB) = min

X∈ΓQ(ρA,ρB)
Tr(CXT ) +

1

λ
h(X) (P)

Where
h(X) = X logX :=

∑
i∈[n]

xi log xi

such that (xi)i are the eigenvalues of X. The lagrangian of this problem can be written
as

LQ,λ(X,αA, αB) = ⟨C, X⟩ −
〈
αA, T rB(X)− ρA

〉
−
〈
αB, T rA(X)− ρB

〉
+

1

λ
h(X)

= ⟨C, X⟩ −
〈
αA, T rB(X)

〉
−
〈
αB, T rA(X)

〉
+
〈
αA, ρA

〉
+
〈
αB, ρB

〉
+

1

λ
h(X)

= ⟨C, X⟩ −
〈
αA ⊗ I, X

〉
−
〈
I ⊗ αB, X

〉
+
〈
αA, ρA

〉
+
〈
αB, ρB

〉
+

1

λ
h(X)

=
〈
C − αA ⊗ I − I ⊗ αB, X

〉
+

1

λ
h(X) +

〈
αA, ρA

〉
+
〈
αB, ρB

〉
The dual problem can be then written as

sup
αA,αB∈Mn(C)

inf
X⪰0

LQ,λ(X,αA, αB)

The function L̂ : X 7−→ LQ,λ(X,αA, αB) has an infinite derivative at the boundary of the
cone of semi definite positive matrices, hence L̂ necessarily reaches its minimum in the
interior of the cone of semi definite positive matrices.

To prove this result, we consider matrix X in the boundary of S+
n2(C), i.e. X =

r∑
k=1

uiu
T
i

where k < n2 and (u1, ..., uk) is an orthonormal family. Let us assume the the minimum
of h is reached at X. Let X̄ be a matrix in S++

n2 (C), we have

h(X + tX̄)− h(X)

t
−−−→
t→0+

−∞

By taking t > 0 small enough such that h(X+tX̄)−h(X)
t

= α < 0, we can see that
h(X + tX̄) < h(X), a contradiction.
Once this result proven, we can say the L̂ reaches its minimum in a matrix X̂ in S++

n2 (C),
and that

∂L̂

∂X
(X̂) = 0

i.e.
C − αA ⊗ I − I ⊗ αB +

1

λ
(log X̂ + I) = 0

i.e.
X̂ = exp(−I − λ(C − αA ⊗ I − I ⊗ αB))

The dual problem can then be rewritten as

sup
αA,αB∈Mn(C)

LQ,λ(X̂, αA, αB)
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Where

LQ,λ(X̂, αA, αB) =
〈
C − αA ⊗ I − I ⊗ αB, X̂

〉
+

1

λ
h(X̂) +

〈
αA, ρA

〉
+
〈
αB, ρB

〉
=

〈
−1

λ
(I + log X̂), X̂

〉
+

1

λ

〈
X̂, log X̂

〉
+
〈
αA, ρA

〉
+
〈
αB, ρB

〉
= −1

λ

〈
I, X̂

〉
+
〈
αA, ρA

〉
+
〈
αB, ρB

〉
=
〈
αA, ρA

〉
+
〈
αB, ρB

〉
− Tr(exp(−I − λ(C − αA ⊗ I − I ⊗ αB)))

We hence obtain the following form for the dual problem

sup
αA,αB∈Mn(C)

〈
αA, ρA

〉
+
〈
αB, ρB

〉
− Tr(exp(−I − λ(C − αA ⊗ I − I ⊗ αB))) (D)

The only thing left to prove now is that the primal and dual problem are equivalent. In
a similar way as the proof of corollary 2.3 in [1], using strong duality theorem in the case
of strictly qualified constraints, we have the following proposition:

If the set of constraints of problem (P ) is strictly feasible, i.e. there exists ρ ≻ 0
such that TrA(ρ) = ρB and TrB(ρ) = ρA, then val(P ) = val(D) and the two
following propositions are equivalent

1. ρ is an optimal solution of (P )
2. ρ ∈ ΓQ(ρA, ρB) and there exists αA, αB ∈ Mn(C) such that

ρ = exp(−I − λ(C − αA ⊗ I − I ⊗ αB))

Proposition 3.1.

We consider fA : Mn(C) ×Mn(C) −→ Mn(C) and fB : Mn(C) ×Mn(C) −→ Mn(C)
such that for all αA, αB ∈ Mn(C)

fA(α
A, αB) = TrA(exp(−I + λ(C + αA ⊗ I + I ⊗ αB)))

fB(α
A, αB) = TrB(exp(−I + λ(C + αA ⊗ I + I ⊗ αB)))

Taking this proposition 3.1 into account, we would like to solve the following system of
equations {

fA(α
A, αB) = ρB

fB(α
A, αB) = ρA

In order to do that, we are getting inspired from the Sinkhorn Algorithm. We define the
two sequence of matrices (αAk)k and (αBk)k, such that

αA
0 , α

B
0 ∈ Mn(C)

αA
k+1 = α s.t. fB(α, αB

k ) = ρA

αB
k+1 = α s.t. fA(αA

k+1, α) = ρB

Before trying to prove that this sequence indeed converges to a solution of our system of
equations, we tried to see first if it is the case in practice.
In the figure above, dk is used to see how well the algorithm converges and is defined as

dk = ∥fA(αA
k , α

B
k )− ρB∥+ ∥fB(αA

k , α
B
k )− ρA∥
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Figure 1: Testing algorithm convergence for different values of λ.

The simulations were made in the case n = 4. The cost matrix C and marginals ρA, ρB
were initialized randomly and αA

0 , α
B
0 were taken equal to 0.

This algorithm was simulated bu using Python’s scipy.optimize.root to solve the two
equations at each iteration. Simulations show that the algorithm indeed converges. How-
ever, we are seeking for solutions for big values of λ, and it seems convergence gets more
difficult as λ gets bigger.
Noting for all k ∈ N, αA

k+1 = φ(αB
k ) and eα

A
k+1 = ψ(eα

B
k ), our houpe was to find that either

φ or ψ were decreasing for Loewener order, or stricly contracting for the following metric
on the cone of positive definite matrices

dH(A,B) := sup logSpec(A−1B)− inf logSpec(A−1B)

i.e. we can find a real number k ∈ [0, 1] such that for all A,B ∈ S+
n (C)

dH(φ(A), φ(B)) ≤ kdH(A,B)

unfortunately, none of the two properties above are true. Simulations show that neither
φ or ψ are decreasing and φ is not a contracting application for the metric dH .
In figure 2, A and B for each value of λ, we use 50 random samples of A and B.

3.2.2 Independent Sinkhorn Algorithm

Knowing the correspondence between completely completely positive linear maps and
bipartite density matrices, we started exploring the scaling problem in the space of com-
pletely positive linear matrices independently of the quantum optimal transport problem.
We denote the set of completely positive linear maps from Mn(C) to Mm(C) as CPn,m.
Operators in CPn,m can be written as follows: for all X ∈ Mn(C),

T (X) =
r∑

i=1

ViXV
∗
i

Where for all i, Vi ∈ Mn(C). We also define T ∗ as

T ∗(X) =
r∑

i=1

V ∗
i XVi
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Figure 2: Computing dH(φ(A),φ(B))
dH(A,B)

for different values of λ

We would like to study the following scaling problem stated in [3].
We define the scaling operator S, given C1 and C2 by the following: for all T ∈ CPn,m

SC1,C2(T ) = C1T (C
∗
2XC2)C

∗
1

Given T ∈ CPn,m, find C1, C2 ∈ Mn(C) such that

SC1,C2(T )(I) = I and SC1,C2(T
∗)(I) = I

The two equalities above can be rewritten as

C1 = (T (C2C
∗
2))

−1/2 and C2 = (T ∗(C1C
∗
1))

−1/2

i.e.
C1C

∗
1 = (T (C2C

∗
2))

−1 and C2C
∗
2 = (T ∗(C1C

∗
1))

−1

Those two equalities gave us the idea of an iterative algorithm. In order to do that, we
define the operator F by the following:

∀X ∈ S+
n (C), F (X1, X2) = (T (X2)

−1, (T ∗(X1))
−1)

The iterative consists of computing a sequence (Xn)n = (Xn
1 , X

n
2 )n∈N defined by:{

X0 ∈ S+
n (C)× S+

n (C)
Xn+1 = F (Xn)

Simulations in Python show that this sequence indeed converges and that if we take
C1 = Xn

1
1/2 and C2 = Xn

2
1/2 for n large enough, obtain that

SC1,C2(T )(I) ≃ I and SC1,C2(T
∗)(I) ≃ I
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4 Conclusion and next steps
In this first step of this project, three main conclusions can be made:

1. The extremal points of ΓQ(ρA, ρB) can be easily expressed in an explicit way when
n = 2, however, for higher values of n, even though there is a characterisation
of extremal points using Choi’s representation, it does not seem easy to write
EXTR(ΓQ(ρA, ρB)) in a more explicit way.

2. We attempted to find a quantum version of the Sinkhorn algorithm by using the
dual version of the Quantum Optimal transport problem, but eventually found out
that both functions φ and ψ are not monotonous nor contracting, which makes it
complicated to have a theoretical proof of the convergence of our first quantum
Sinkhorn algorithm.

3. We are currently studying another version of Sinkhorn’s algorithm suggested by
[3]. Simulations show that we can indeed empirically solve the scaling problem for
marginals equal to the identity matrix. We are planning to see if it is possible to do
the same for marginals other than I and prove the convergence theoretically.
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